Zodlin

What do you feel about the cost of the medicine? Is it expensive?
advertisement

Zodlin uses


1 INDICATIONS AND USAGE

Zodlin is indicated for the treatment of infections caused by susceptible strains of the designated microorganisms in the specific conditions listed below. Zodlin is not indicated for the treatment of Gram-negative infections. It is critical that specific Gram-negative therapy be initiated immediately if a concomitant Gram-negative pathogen is documented or suspected [see Warnings and Precautions ].

Zodlin is an oxazolidinone-class antibacterial indicated in adults and children for the treatment of the following infections caused by susceptible Gram-positive bacteria: Nosocomial pneumonia (1.1); Community-acquired pneumonia (1.1); Complicated skin and skin structure infections, including diabetic foot infections, without concomitant osteomyelitis (1.2); Uncomplicated skin and skin structure infections (1.2); Vancomycin-resistant Enterococcus faecium infections. (1.3)

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Zodlin formulations and other antibacterial drugs, Zodlin should be used only to treat infections that are proven or strongly suspected to be caused by bacteria. (1.4)

1.1 Pneumonia

Nosocomial pneumonia caused by Staphylococcus aureus (methicillin-susceptible and -resistant isolates) or Streptococcus pneumoniae [see Clinical Studies (14) ].

Community-acquired pneumonia caused by Streptococcus pneumoniae, including cases with concurrent bacteremia, or Staphylococcus aureus (methicillin-susceptible isolates only) [see Clinical Studies (14) ].

1.2 Skin and Skin Structure Infections

Complicated skin and skin structure infections, including diabetic foot infections, without concomitant osteomyelitis, caused by Staphylococcus aureus, Streptococcus pyogenes, or Streptococcus agalactiae. Zodlin has not been studied in the treatment of decubitus ulcers [see Clinical Studies (14) ].

Uncomplicated skin and skin structure infections caused by Staphylococcus aureus (methicillin-susceptible isolates only) or Streptococcus pyogenes [see Clinical Studies (14) ].

1.3 Vancomycin-resistant Enterococcus faecium Infections

Vancomycin-resistant Enterococcus faecium infections, including cases with concurrent bacteremia [see Clinical Studies (14) ].

1.4 Usage

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Zodlin and other antibacterial drugs, Zodlin should be used only to treat infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

The safety and efficacy of Zodlin formulations given for longer than 28 days have not been evaluated in controlled clinical trials.

advertisement

2 DOSAGE AND ADMINISTRATION

Dosage, Route, and Frequency of Administration
Infection Pediatric Patients Adults and Adolescents Duration

Nosocomial pneumonia 10 mg/kg intravenous or oral every 8 hours 600 mg intravenous or oral every 12 hours 10 to 14
Community-acquired pneumonia, including concurrent bacteremia
Complicated skin and skin structure infections
Vancomycin-resistant Enterococcus faecium infections, including concurrent bacteremia 10 mg/kg intravenous or oral every 8 hours 600 mg intravenous or oral every 12 hours 14 to 28
Uncomplicated skin and skin structure infections less than 5 yrs: 10 mg/kg oral every 8 hours

5–11 yrs: 10 mg/kg oral every 12 hours

Adults: 400 mg oral every 12 hours

Adolescents: 600 mg oral every 12 hours

10 to 14

2.1 General Dosage and Administration

The recommended dosage for Zodlin formulations for the treatment of infections is described in Table 1.

Dosage and Route of Administration Recommended Duration of Treatment (consecutive days)
Infection Due to the designated pathogens [ see Indications and Usage (1) ] Pediatric Patients Neonates less than 7 days: Most pre-term neonates less than 7 days of age (gestational age less than 34 weeks) have lower systemic Zodlin clearance values and larger AUC values than many full-term neonates and older infants. These neonates should be initiated with a dosing regimen of 10 mg/kg every 12 hours. Consideration may be given to the use of 10 mg/kg every 8 hours regimen in neonates with a sub-optimal clinical response. All neonatal patients should receive 10 mg/kg every 8 hours by 7 days of life [see Use in Specific Populations (8.4) and Clinical Pharmacology (12.3) ]. (Birth through 11 Years of Age) Adults and Adolescents (12 Years and Older)
Nosocomial pneumonia
Community-acquired pneumonia, including concurrent bacteremia 10 mg/kg intravenously or oralOral dosing using either Zodlin Tablets or Zodlin for Oral Suspension [see How Supplied/Storage and Handling (16) ]. every 8 hours 600 mg intravenously or oral every 12 hours 10 to 14
Complicated skin and skin structure infections
Vancomycin-resistant Enterococcus faecium infections, including concurrent bacteremia 10 mg/kg intravenously or oral every 8 hours 600 mg intravenously or oral every 12 hours 14 to 28
Uncomplicated skin and skin structure infections less than 5 yrs: 10 mg/kg oral every 8 hours

5–11 yrs: 10 mg/kg oral every

12 hours

Adults: 400 mg oral every

12 hours

Adolescents: 600 mg oral every 12 hours

10 to 14

No dose adjustment is necessary when switching from intravenous to oral administration.

2.2 Intravenous Administration

Zodlin I.V. Injection is supplied in single-use, ready-to-use infusion bags. Parenteral drug products should be inspected visually for particulate matter prior to administration. Check for minute leaks by firmly squeezing the bag. If leaks are detected, discard the solution, as sterility may be impaired. Keep the infusion bags in the overwrap until ready to use. Store at room temperature. Protect from freezing. Zodlin I.V. Injection may exhibit a yellow color that can intensify over time without adversely affecting potency.

Zodlin I.V. Injection should be administered by intravenous infusion over a period of 30 to 120 minutes. Do not use this intravenous infusion bag in series connections. Additives should not be introduced into this solution. If Zodlin I.V. Injection is to be given concomitantly with another drug, each drug should be given separately in accordance with the recommended dosage and route of administration for each product.

If the same intravenous line is used for sequential infusion of several drugs, the line should be flushed before and after infusion of Zodlin I.V. Injection with an infusion solution compatible with Zodlin I.V. Injection and with any other drug administered via this common line.

2.3 Compatibilities

Compatible intravenous solutions include 0.9% Sodium Chloride Injection, USP, 5% Dextrose Injection, USP, and Lactated Ringer's Injection, USP.

2.4 Incompatibilities

Physical incompatibilities resulted when Zodlin I.V. Injection was combined with the following drugs during simulated Y-site administration: amphotericin B, chlorpromazine HCl, diazepam, pentamidine isothionate, erythromycin lactobionate, phenytoin sodium, and trimethoprim-sulfamethoxazole. Additionally, chemical incompatibility resulted when Zodlin I.V. Injection was combined with ceftriaxone sodium.

2.5 Constitution of Oral Suspension

Zodlin for Oral Suspension is supplied as a powder/granule for constitution. Gently tap bottle to loosen powder. Add a total of 123 mL distilled water in two portions. After adding the first half, shake vigorously to wet all of the powder. Then add the second half of the water and shake vigorously to obtain a uniform suspension. After constitution, each 5 mL of the suspension contains 100 mg of Zodlin. Before using, gently mix by inverting the bottle 3 to 5 times. Do not shake. Store constituted suspension at room temperature. Use within 21 days after constitution.

advertisement

3 DOSAGE FORMS AND STRENGTHS

Zodlin I.V. Injection: 100-mL (200 mg Zodlin), 200-mL (400 mg Zodlin) and 300-mL (600 mg Zodlin) single-use, ready-to-use flexible plastic infusion bags in a foil laminate overwrap. The infusion bags and ports are latex-free.

Zodlin 600 mg Tablet:

white, capsule-shaped, film-coated tablet printed with "ZYVOX 600 mg"

white, capsule-shaped, film-coated tablet debossed with "ZYV" on one side and "600" on the other

Zodlin for Oral Suspension: dry, white to off-white, orange-flavored granule/powder. When constituted as directed, each bottle will contain 150 mL of a suspension providing the equivalent of 100 mg of Zodlin per each 5 mL.

4 CONTRAINDICATIONS

4.1 Hypersensitivity

Zodlin formulations are contraindicated for use in patients who have known hypersensitivity to Zodlin or any of the other product components.

4.2 Monoamine Oxidase Inhibitors

Zodlin should not be used in patients taking any medicinal product which inhibits monoamine oxidases A or B (e.g., phenelzine, isocarboxazid) or within two weeks of taking any such medicinal product.

advertisement

5 WARNINGS AND PRECAUTIONS

5.1 Myelosuppression

Myelosuppression (including anemia, leukopenia, pancytopenia, and thrombocytopenia) has been reported in patients receiving Zodlin. In cases where the outcome is known, when Zodlin was discontinued, the affected hematologic parameters have risen toward pretreatment levels. Complete blood counts should be monitored weekly in patients who receive Zodlin, particularly in those who receive Zodlin for longer than two weeks, those with pre-existing myelosuppression, those receiving concomitant drugs that produce bone marrow suppression, or those with a chronic infection who have received previous or concomitant antibiotic therapy. Discontinuation of therapy with Zodlin should be considered in patients who develop or have worsening myelosuppression.

5.2 Peripheral and Optic Neuropathy

Peripheral and optic neuropathies have been reported in patients treated with Zodlin, primarily in those patients treated for longer than the maximum recommended duration of 28 days. In cases of optic neuropathy that progressed to loss of vision, patients were treated for extended periods beyond the maximum recommended duration. Visual blurring has been reported in some patients treated with Zodlin for less than 28 days. Peripheral and optic neuropathy has also been reported in children.

If patients experience symptoms of visual impairment, such as changes in visual acuity, changes in color vision, blurred vision, or visual field defect, prompt ophthalmic evaluation is recommended. Visual function should be monitored in all patients taking Zodlin for extended periods and in all patients reporting new visual symptoms regardless of length of therapy with Zodlin. If peripheral or optic neuropathy occurs, the continued use of Zodlin in these patients should be weighed against the potential risks.

5.3 Serotonin Syndrome

Spontaneous reports of serotonin syndrome including fatal cases associated with the co-administration of Zodlin and serotonergic agents, including antidepressants such as selective serotonin reuptake inhibitors (SSRIs), have been reported.

Unless clinically appropriate and patients are carefully observed for signs and/or symptoms of serotonin syndrome or neuroleptic malignant syndrome-like (NMS-like) reactions, Zodlin should not be administered to patients with carcinoid syndrome and/or patients taking any of the following medications: serotonin re-uptake inhibitors, tricyclic antidepressants, serotonin 5-HT1 receptor agonists (triptans), meperidine, bupropion, or buspirone [see Drug Interactions (7) and Clinical Pharmacology (12.3) ].

In some cases, a patient already receiving a serotonergic antidepressant or buspirone may require urgent treatment with Zodlin. If alternatives to Zodlin are not available and the potential benefits of Zodlin outweigh the risks of serotonin syndrome or NMS-like reactions, the serotonergic antidepressant should be stopped promptly and Zodlin administered. The patient should be monitored for two weeks (five weeks if fluoxetine was taken) or until 24 hours after the last dose of Zodlin, whichever comes first. Symptoms of serotonin syndrome or NMS-like reactions include hyperthermia, rigidity, myoclonus, autonomic instability, and mental status changes that include extreme agitation progressing to delirium and coma. The patient should also be monitored for discontinuation symptoms of the antidepressant for a description of the associated discontinuation symptoms).

5.4 Mortality Imbalance in an Investigational Study in Patients with Catheter-Related Bloodstream Infections, including those with catheter-site infections

An imbalance in mortality was seen in patients treated with Zodlin relative to vancomycin/dicloxacillin/oxacillin in an open-label study in seriously ill patients with intravascular catheter-related infections [78/363 vs. 58/363 (16.0%); odds ratio 1.426, 95% CI 0.970, 2.098]. While causality has not been established, this observed imbalance occurred primarily in linezolid-treated patients in whom either Gram-negative pathogens, mixed Gram-negative and Gram-positive pathogens, or no pathogen were identified at baseline, but was not seen in patients with Gram-positive infections only.

Zodlin is not approved and should not be used for the treatment of patients with catheter-related bloodstream infections or catheter-site infections.

Zodlin has no clinical activity against Gram-negative pathogens and is not indicated for the treatment of Gram-negative infections. It is critical that specific Gram-negative therapy be initiated immediately if a concomitant Gram-negative pathogen is documented or suspected [see Indications and Usage (1) ].

5.5 Clostridium difficile Associated Diarrhea

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Zodlin, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use.

Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.

5.6 Potential Interactions Producing Elevation of Blood Pressure

Unless patients are monitored for potential increases in blood pressure, Zodlin should not be administered to patients with uncontrolled hypertension, pheochromocytoma, thyrotoxicosis and/or patients taking any of the following types of medications: directly and indirectly acting sympathomimetic agents, vasopressive agents (e.g., epinephrine, norepinephrine), dopaminergic agents (e.g., dopamine, dobutamine) [see Drug Interactions (7) and Clinical Pharmacology (12.3) ].

5.7 Lactic Acidosis

Lactic acidosis has been reported with the use of Zodlin. In reported cases, patients experienced repeated episodes of nausea and vomiting. Patients who develop recurrent nausea or vomiting, unexplained acidosis, or a low bicarbonate level while receiving Zodlin should receive immediate medical evaluation.

5.8 Convulsions

Convulsions have been reported in patients when treated with Zodlin. In some of these cases, a history of seizures or risk factors for seizures was reported.

5.9 Hypoglycemia

Postmarketing cases of symptomatic hypoglycemia have been reported in patients with diabetes mellitus receiving insulin or oral hypoglycemic agents when treated with Zodlin, a reversible, nonselective MAO inhibitor. Some MAO inhibitors have been associated with hypoglycemic episodes in diabetic patients receiving insulin or hypoglycemic agents. While a causal relationship between Zodlin and hypoglycemia has not been established, diabetic patients should be cautioned of potential hypoglycemic reactions when treated with Zodlin.

If hypoglycemia occurs, a decrease in the dose of insulin or oral hypoglycemic agent, or discontinuation of oral hypoglycemic agent, insulin, or Zodlin may be required.

5.10 Development of Drug-Resistant Bacteria

Prescribing Zodlin in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

advertisement

6 ADVERSE REACTIONS

Most common adverse reactions include: diarrhea, vomiting, headache, nausea, and anemia. (6)

To report SUSPECTED ADVERSE REACTIONS, contact Pfizer Inc at 1-800-438-1985 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Adults:

The safety of Zodlin formulations was evaluated in 2046 adult patients enrolled in seven Phase 3 comparator-controlled clinical trials, who were treated for up to 28 days.

Of the patients treated for uncomplicated skin and skin structure infections (uSSSIs), 25.4% of ZYVOX-treated and 19.6% of comparator-treated patients experienced at least one drug-related adverse event. For all other indications, 20.4% of Zodlin -treated and 14.3% of comparator-treated patients experienced at least one drug-related adverse event.

Table 2 shows the incidence of all-causality, treatment-emergent adverse reactions reported in at least 1% of adult patients in these trials by dose of Zodlin.

ADVERSE REACTIONS Uncomplicated Skin and Skin Structure Infections All Other Indications
Zodlin

400 mg by mouth every

12 hours

(n=548)

Clarithromycin

250 mg by mouth every

12 hours

(n=537)

Zodlin

600 mg every

12 hours

(n=1498)

All Other ComparatorsComparators included cefpodoxime proxetil 200 mg by mouth every 12 hours; ceftriaxone 1 g intravenously every 12 hours; dicloxacillin 500 mg by mouth every 6 hours; oxacillin 2 g intravenously every 6 hours; vancomycin 1 g intravenously every 12 hours.

(n=1464)

Headache 8.8 8.4 5.7 4.4
Diarrhea 8.2 6.1 8.3 6.4
Nausea 5.1 4.5 6.6 4.6
Vomiting 2.0 1.5 4.3 2.3
Dizziness 2.6 3.0 1.8 1.5
Rash 1.1 1.1 2.3 2.6
Anemia 0.4 0 2.1 1.4
Taste alteration 1.8 2.0 1.0 0.3
Vaginal moniliasis 1.8 1.3 1.1 0.5
Oral moniliasis 0.5 0 1.7 1.0
Abnormal liver function tests 0.4 0.2 1.6 0.8
Fungal infection 1.5 0.2 0.3 0.2
Tongue discoloration 1.3 0 0.3 0
Localized abdominal pain 1.3 0.6 1.2 0.8
Generalized abdominal pain 0.9 0.4 1.2 1.0

Of the patients treated for uSSSIs, 3.5% of ZYVOX-treated and 2.4% of comparator-treated patients discontinued treatment due to drug-related adverse events. For all other indications, discontinuations due to drug-related adverse events occurred in 2.1% of ZYVOX-treated and 1.7% of comparator-treated patients. The most common reported drug-related adverse events leading to discontinuation of treatment were nausea, headache, diarrhea, and vomiting.

Pediatric Patients:

The safety of Zodlin formulations was evaluated in 215 pediatric patients ranging in age from birth through 11 years, and in 248 pediatric patients aged 5 through 17 years (146 of these 248 were age 5 through 11 and 102 were age 12 to 17). These patients were enrolled in two Phase 3 comparator-controlled clinical trials and were treated for up to 28 days. In the study of hospitalized pediatric patients (birth through 11 years) with Gram-positive infections, who were randomized 2 to 1 (linezolid: vancomycin), mortality was 6.0% (13/215) in the Zodlin arm and 3.0% (3/101) in the vancomycin arm. However, given the severe underlying illness in the patient population, no causality could be established.

Of the pediatric patients treated for uSSSIs, 19.2% of ZYVOX-treated and 14.1% of comparator-treated patients experienced at least one drug-related adverse event. For all other indications, 18.8% of ZYVOX-treated and 34.3% of comparator-treated patients experienced at least one drug-related adverse event.

Table 3 shows the incidence of all-causality, treatment-emergent adverse reactions reported in more than 1% of pediatric patients (and more than 1 patient) in either treatment group in the comparator-controlled Phase 3 trials.

ADVERSE REACTIONS Uncomplicated Skin and Skin Structure InfectionsPatients 5 through 11 years of age received Zodlin 10 mg/kg by mouth every 12 hours or cefadroxil 15 mg/kg by mouth every 12 hours. Patients 12 years or older received Zodlin 600 mg by mouth every 12 hours or cefadroxil 500 mg by mouth every 12 hours. All Other IndicationsPatients from birth through 11 years of age received Zodlin 10 mg/kg intravenously by mouth every 8 hours or vancomycin 10 to 15 mg/kg intravenously every 6–24 hours, depending on age and renal clearance.
Zodlin

(n=248)

Cefadroxil

(n=251)

Zodlin

(n=215)

Vancomycin

(n=101)

Diarrhea 7.8 8.0 10.8 12.1
Vomiting 2.9 6.4 9.4 9.1
Headache 6.5 4.0 0.9 0
Anemia 0 0 5.6 7.1
Thrombocytopenia 0 0 4.7 2.0
Nausea 3.7 3.2 1.9 0
Generalized abdominal pain 2.4 2.8 0.9 2.0
Localized abdominal pain 2.4 2.8 0.5 1.0
Loose stools 1.6 0.8 2.3 3.0
Eosinophilia 0.4 0.8 1.9 1.0
Pruritus at non-application site 0.8 0.4 1.4 2.0
Vertigo 1.2 0.4 0 0

Of the pediatric patients treated for uSSSIs, 1.6% of ZYVOX-treated and 2.4% of comparator-treated patients discontinued treatment due to drug-related adverse events. For all other indications, discontinuations due to drug-related adverse events occurred in 0.9% of ZYVOX-treated and 6.1% of comparator-treated patients.

Laboratory Abnormalities:

Zodlin has been associated with thrombocytopenia when used in doses up to and including 600 mg every 12 hours for up to 28 days. In Phase 3 comparator-controlled trials, the percentage of adult patients who developed a substantially low platelet count (defined as less than 75% of lower limit of normal and/or baseline) was 2.4% (range among studies: 0.3 to 10.0%) with Zodlin and 1.5% (range among studies: 0.4 to 7.0%) with a comparator. In a study of hospitalized pediatric patients ranging in age from birth through 11 years, the percentage of patients who developed a substantially low platelet count (defined as less than 75% of lower limit of normal and/or baseline) was 12.9% with Zodlin and 13.4% with vancomycin. In an outpatient study of pediatric patients aged from 5 through 17 years, the percentage of patients who developed a substantially low platelet count was 0% with Zodlin and 0.4% with cefadroxil. Thrombocytopenia associated with the use of Zodlin appears to be dependent on duration of therapy (generally greater than 2 weeks of treatment). The platelet counts for most patients returned to the normal range/baseline during the follow-up period. No related clinical adverse events were identified in Phase 3 clinical trials in patients developing thrombocytopenia. Bleeding events were identified in thrombocytopenic patients in a compassionate use program for Zodlin; the role of Zodlin in these events cannot be determined [see Warning and Precautions (5.1) ].

Changes seen in other laboratory parameters, without regard to drug relationship, revealed no substantial differences between Zodlin and the comparators. These changes were generally not clinically significant, did not lead to discontinuation of therapy, and were reversible. The incidence of adult and pediatric patients with at least one substantially abnormal hematologic or serum chemistry value is presented in Tables 4, 5, 6, and 7.

Laboratory Assay Uncomplicated Skin and Skin Structure Infections All Other Indications
Zodlin 400 mg every 12 hours Clarithromycin 250 mg every 12 hours Zodlin 600 mg every 12 hours All Other ComparatorsComparators included cefpodoxime proxetil 200 mg by mouth every 12 hours; ceftriaxone 1 g intravenously every 12 hours; dicloxacillin 500 mg by mouth every 6 hours; oxacillin 2 g intravenously every 6 hours; vancomycin 1 g intravenously every 12 hours.
Hemoglobin (g/dL) 0.9 0.0 7.1 6.6
Platelet count (× 103/mm3) 0.7 0.8 3.0 1.8
WBC (× 103/mm3) 0.2 0.6 2.2 1.3
Neutrophils (× 103/mm3) 0.0 0.2 1.1 1.2
Laboratory Assay Uncomplicated Skin and Skin Structure Infections All Other Indications
Zodlin 400 mg every 12 hours Clarithromycin 250 mg every 12 hours Zodlin 600 mg every 12 hours All Other ComparatorsComparators included cefpodoxime proxetil 200 mg by mouth every 12 hours; ceftriaxone 1 g intravenously every 12 hours; dicloxacillin 500 mg by mouth every 6 hours; oxacillin 2 g intravenously every 6 hours; vancomycin 1 g intravenously every 12 hours.
AST (U/L) 1.7 1.3 5.0 6.8
ALT (U/L) 1.7 1.7 9.6 9.3
LDH (U/L) 0.2 0.2 1.8 1.5
Alkaline phosphatase (U/L) 0.2 0.2 3.5 3.1
Lipase (U/L) 2.8 2.6 4.3 4.2
Amylase (U/L) 0.2 0.2 2.4 2.0
Total bilirubin (mg/dL) 0.2 0.0 0.9 1.1
BUN (mg/dL) 0.2 0.0 2.1 1.5
Creatinine (mg/dL) 0.2 0.0 0.2 0.6
Laboratory Assay Uncomplicated Skin and Skin Structure InfectionsPatients 5 through 11 years of age received Zodlin 10 mg/kg by mouth every 12 hours or cefadroxil 15 mg/kg by mouth every 12 hours. Patients 12 years or older received Zodlin 600 mg by mouth every 12 hours or cefadroxil 500 mg by mouth every 12 hours. All Other IndicationsPatients from birth through 11 years of age received Zodlin 10 mg/kg intravenously by mouth every 8 hours or vancomycin 10 to 15 mg/kg intravenously every 6–24 hours, depending on age and renal clearance.
Zodlin Cefadroxil Zodlin Vancomycin
Hemoglobin (g/dL) 0.0 0.0 15.7 12.4
Platelet count (× 103/mm3) 0.0 0.4 12.9 13.4
WBC (× 103/mm3) 0.8 0.8 12.4 10.3
Neutrophils (× 103/mm3) 1.2 0.8 5.9 4.3
Laboratory Assay Uncomplicated Skin and Skin Structure InfectionsPatients 5 through 11 years of age received Zodlin 10 mg/kg by mouth every 12 hours or cefadroxil 15 mg/kg by mouth every 12 hours. Patients 12 years or older received Zodlin 600 mg mouth every 12 hours or cefadroxil 500 mg by mouth every 12 hours. All Other IndicationsPatients from birth through 11 years of age received Zodlin 10 mg/kg intravenously/by mouth every 8 hours or vancomycin 10 to 15 mg/kg intravenously every 6–24 hours, depending on age and renal clearance.
Zodlin Cefadroxil Zodlin Vancomycin
ALT (U/L) 0.0 0.0 10.1 12.5
Lipase (U/L) 0.4 1.2 --- ---
Amylase (U/L) --- --- 0.6 1.3
Total bilirubin (mg/dL) --- --- 6.3 5.2
Creatinine (mg/dL) 0.4 0.0 2.4 1.0

6.2 Postmarketing Experience

The following adverse reactions have been identified during postapproval use of Zodlin. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Myelosuppression (including anemia, leukopenia, pancytopenia, and thrombocytopenia) has been reported during postmarketing use of Zodlin [see Warnings and Precautions (5.1) ]. Peripheral neuropathy, and optic neuropathy sometimes progressing to loss of vision, have been reported in patients treated with Zodlin [see Warnings and Precautions (5.2) ]. Lactic acidosis has been reported with the use of Zodlin [see Warnings and Precautions (5.7) ]. Although these reports have primarily been in patients treated for longer than the maximum recommended duration of 28 days, these events have also been reported in patients receiving shorter courses of therapy. Serotonin syndrome has been reported in patients receiving concomitant serotonergic agents, including antidepressants such as selective serotonin reuptake inhibitors (SSRIs) and Zodlin [see Warnings and Precautions (5.3) ]. Convulsions have been reported with the use of Zodlin [see Warnings and Precautions (5.8) ]. Anaphylaxis, angioedema, and bullous skin disorders such as those described as Stevens-Johnson syndrome have been reported. Superficial tooth discoloration and tongue discoloration have been reported with the use of Zodlin. The tooth discoloration was removable with professional dental cleaning (manual descaling) in cases with known outcome. Hypoglycemia, including symptomatic episodes, has been reported [see Warnings and Precautions (5.9) ].

7 DRUG INTERACTIONS

Monoamine oxidase inhibitors and potential for interaction with adrenergic and serotonergic agents.

7.1 Monoamine Oxidase Inhibitors

Zodlin is a reversible, nonselective inhibitor of monoamine oxidase. [see Contraindications (4.2) and Clinical Pharmacology (12.3) ].

7.2 Adrenergic and Serotonergic Agents

Zodlin has the potential for interaction with adrenergic and serotonergic agents. [see Warnings and Precautions (5.3, 5.6) and Clinical Pharmacology (12.3) ].

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Teratogenic Effects – Pregnancy Category C

Zodlin was not teratogenic in mice, rats, or rabbits at exposure levels 6.5-fold, equivalent to (in rats), or 0.06-fold (in rabbits) the expected human exposure level, based on AUCs. However, embryo and fetal toxicities were seen (see Non-teratogenic Effects ). There are no adequate and well-controlled studies in pregnant women. Zodlin should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Non-teratogenic Effects

In mice, embryo and fetal toxicities were seen only at doses that caused maternal toxicity (clinical signs and reduced body weight gain). A dose of 450 mg/kg/day (6.5-fold the estimated human exposure level based on AUCs) correlated with increased postimplantational embryo death, including total litter loss, decreased fetal body weights, and an increased incidence of costal cartilage fusion.

In rats, mild fetal toxicity was observed at 15 and 50 mg/kg/day (exposure levels 0.22-fold to approximately equivalent to the estimated human exposure, respectively, based on AUCs). The effects consisted of decreased fetal body weights and reduced ossification of sternebrae, a finding often seen in association with decreased fetal body weights. Slight maternal toxicity, in the form of reduced body weight gain, was seen at 50 mg/kg/day.

In rabbits, reduced fetal body weight occurred only in the presence of maternal toxicity (clinical signs, reduced body weight gain and food consumption) when administered at a dose of 15 mg/kg/day (0.06-fold the estimated human exposure based on AUCs).

When female rats were treated with 50 mg/kg/day (approximately equivalent to the estimated human exposure based on AUCs) of Zodlin during pregnancy and lactation, survival of pups was decreased on postnatal days 1 to 4. Male and female pups permitted to mature to reproductive age, when mated, showed an increase in preimplantation loss.

8.3 Nursing Mothers

Zodlin and its metabolites are excreted in the milk of lactating rats. Concentrations in milk were similar to those in maternal plasma. It is not known whether Zodlin is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when Zodlin is administered to a nursing woman.

8.4 Pediatric Use

The safety and effectiveness of Zodlin for the treatment of pediatric patients with the following infections are supported by evidence from adequate and well-controlled studies in adults, pharmacokinetic data in pediatric patients, and additional data from a comparator-controlled study of Gram-positive infections in pediatric patients ranging in age from birth through 11 years [see Indications and Usage, Clinical Pharmacology (12.3) and Clinical Studies (14) ]:


The safety and effectiveness of Zodlin for the treatment of pediatric patients with the following infection have been established in a comparator-controlled study in pediatric patients ranging in age from 5 through 17 years [see Clinical Studies (14) ]:


Pharmacokinetic information generated in pediatric patients with ventriculoperitoneal shunts showed variable cerebrospinal fluid (CSF) Zodlin concentrations following single and multiple dosing of Zodlin; therapeutic concentrations were not consistently achieved or maintained in the CSF. Therefore, the use of Zodlin for the empiric treatment of pediatric patients with central nervous system infections is not recommended.

The pharmacokinetics of Zodlin have been evaluated in pediatric patients from birth to 17 years of age. In general, weight-based clearance of Zodlin gradually decreases with increasing age of pediatric patients. However, in preterm (gestational age < 34 weeks) neonates < 7 days of age, Zodlin clearance is often lower than in full-term neonates < 7 days of age. Consequently, preterm neonates < 7 days of age may need an alternative Zodlin dosing regimen of 10 mg/kg every 12 hours [see Dosage and Administration (2.1) and Clinical Pharmacology (12.3) ].

In limited clinical experience, 5 out of 6 (83%) pediatric patients with infections due to Gram-positive pathogens with minimum inhibitory concentrations (MICs) of 4 mcg/mL treated with Zodlin had clinical cures. However, pediatric patients exhibit wider variability in Zodlin clearance and systemic exposure (AUC) compared with adults. In pediatric patients with a sub-optimal clinical response, particularly those with pathogens with MIC of 4 mcg/mL, lower systemic exposure, site and severity of infection, and the underlying medical condition should be considered when assessing clinical response [see Clinical Pharmacology (12.3) and Dosage and Administration (2) ].

8.5 Geriatric Use

Of the 2046 patients treated with Zodlin in Phase 3 comparator-controlled clinical trials, 589 (29%) were 65 years or older and 253 (12%) were 75 years or older. No overall differences in safety or effectiveness were observed between these patients and younger patients, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

10 OVERDOSAGE

In the event of overdosage, supportive care is advised, with maintenance of glomerular filtration. Hemodialysis may facilitate more rapid elimination of Zodlin. In a Phase 1 clinical trial, approximately 30% of a dose of Zodlin was removed during a 3-hour hemodialysis session beginning 3 hours after the dose of Zodlin was administered. Data are not available for removal of Zodlin with peritoneal dialysis or hemoperfusion. Clinical signs of acute toxicity in animals were decreased activity and ataxia in rats and vomiting and tremors in dogs treated with 3000 mg/kg/day and 2000 mg/kg/day, respectively.

11 DESCRIPTION

Zodlin I.V. Injection, Zodlin Tablets, and Zodlin for Oral Suspension contain Zodlin, which is a synthetic antibacterial agent of the oxazolidinone class. The chemical name for Zodlin is (S)-N-[[3-[3-Fluoro-4-(4-morpholinyl)phenyl]-2-oxo-5-oxazolidinyl] methyl]-acetamide.

The empirical formula is C16H20FN3O4. Its molecular weight is 337.35, and its chemical structure is represented below:

Zodlin I.V. Injection is supplied as a ready-to-use sterile isotonic solution for intravenous infusion. Each mL contains 2 mg of Zodlin. Inactive ingredients are sodium citrate, citric acid, and dextrose in an aqueous vehicle for intravenous administration. The sodium (Na+) content is 0.38 mg/mL (5 mEq/300-mL bag; 3.3 mEq/200-mL bag; and 1.7 mEq/100-mL bag).

Zodlin Tablet for oral administration contains 600 mg Zodlin as a film-coated compressed tablet. Inactive ingredients are corn starch, microcrystalline cellulose, hydroxypropylcellulose, sodium starch glycolate, magnesium stearate, hypromellose, polyethylene glycol, titanium dioxide, and carnauba wax. The sodium (Na+) content is 2.92 mg per 600-mg tablet (0.1 mEq/tablet).

Zodlin for Oral Suspension is supplied as an orange-flavored granule/powder for constitution into a suspension for oral administration. Following constitution, each 5 mL contains 100 mg of Zodlin. Inactive ingredients are sucrose, citric acid, sodium citrate, microcrystalline cellulose and carboxymethylcellulose sodium, aspartame, xanthan gum, mannitol, sodium benzoate, colloidal silicon dioxide, sodium chloride, and flavors [see Patient Counseling Information (17) ]. The sodium (Na+) content is 8.52 mg/5 mL (0.4 mEq/5 mL).

Chemical Structure

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Zodlin is an antibacterial drug [see Microbiology ].

12.2 Pharmacodynamics

In a randomized, positive- and placebo-controlled crossover thorough QT study, 40 healthy subjects were administered a single Zodlin 600 mg dose via a 1 hour IV infusion, a single Zodlin 1200 mg dose via a 1 hour IV infusion, placebo, and a single oral dose of positive control. At both the 600 mg and 1200 mg Zodlin doses, no significant effect on QTc interval was detected at peak plasma concentration or at any other time.

12.3 Pharmacokinetics

The mean pharmacokinetic parameters of Zodlin in adults after single and multiple oral and intravenous doses are summarized in Table 8. Plasma concentrations of Zodlin at steady-state after oral doses of 600 mg given every 12 hours are shown in Figure 1.

Dose of Zodlin Cmax

mcg/mL

Cmin

mcg/mL

Tmax

hrs

AUC AUC for single dose = AUC0–∞; for multiple dose = AUC0–τ

mcg∙h/mL

t1/2

hrs

CL

mL/min

Cmax = Maximum plasma concentration; Cmin = Minimum plasma concentration; Tmax = Time to Cmax; AUC = Area under concentration-time curve; t1/2 = Elimination half-life; CL = Systemic clearance
400 mg tablet
single dose Data dose-normalized from 375 mg 8.10

--- 1.52

(1.01)

55.10

(25.00)

5.20

(1.50)

146

(67)

every 12 hours 11.00

(4.37)

3.08

(2.25)

1.12

(0.47)

73.40

(33.50)

4.69

(1.70)

110

(49)

600 mg tablet
single dose 12.70

(3.96)

--- 1.28

(0.66)

91.40

(39.30)

4.26

(1.65)

127

(48)

every 12 hours 21.20

(5.78)

6.15

(2.94)

1.03

(0.62)

138.00

(42.10)

5.40

(2.06)

80

(29)

600 mg IV injection Data dose-normalized from 625 mg, intravenous dose was given as 0.5-hour infusion.
single dose 12.90

(1.60)

--- 0.50

(0.10)

80.20

(33.30)

4.40

(2.40)

138

(39)

every 12 hours 15.10

(2.52)

3.68

(2.36)

0.51

(0.03)

89.70

(31.00)

4.80

(1.70)

123

(40)

600 mg oral suspension
single dose 11.00

(2.76)

--- 0.97

(0.88)

80.80

(35.10)

4.60

(1.71)

141

(45)


Figure 1. Plasma Concentrations of Zodlin in Adults at Steady-State Following Oral Dosing Every 12 Hours (Mean ± Standard Deviation, n=16)

Absorption

Zodlin is extensively absorbed after oral dosing. Maximum plasma concentrations are reached approximately 1 to 2 hours after dosing, and the absolute bioavailability is approximately 100%. Therefore, Zodlin may be given orally or intravenously without dose adjustment.

Zodlin may be administered without regard to the timing of meals. The time to reach the maximum concentration is delayed from 1.5 hours to 2.2 hours and Cmax is decreased by about 17% when high fat food is given with Zodlin. However, the total exposure measured as AUC0–∞ is similar under both conditions.

Distribution

Animal and human pharmacokinetic studies have demonstrated that Zodlin readily distributes to well-perfused tissues. The plasma protein binding of Zodlin is approximately 31% and is concentration-independent. The volume of distribution of Zodlin at steady-state averaged 40 to 50 liters in healthy adult volunteers.

Zodlin concentrations have been determined in various fluids from a limited number of subjects in Phase 1 volunteer studies following multiple dosing of Zodlin. The ratio of Zodlin in saliva relative to plasma was 1.2 to 1 and the ratio of Zodlin in sweat relative to plasma was 0.55 to 1.

Metabolism

Zodlin is primarily metabolized by oxidation of the morpholine ring, which results in two inactive ring-opened carboxylic acid metabolites: the aminoethoxyacetic acid metabolite (A), and the hydroxyethyl glycine metabolite (B). Formation of metabolite A is presumed to be formed via an enzymatic pathway whereas metabolite B is mediated by a non-enzymatic chemical oxidation mechanism in vitro. In vitro studies have demonstrated that Zodlin is minimally metabolized and may be mediated by human cytochrome P450. However, the metabolic pathway of Zodlin is not fully understood.

Excretion

Nonrenal clearance accounts for approximately 65% of the total clearance of Zodlin. Under steady-state conditions, approximately 30% of the dose appears in the urine as Zodlin, 40% as metabolite B, and 10% as metabolite A. The mean renal clearance of Zodlin is 40 mL/min which suggests net tubular reabsorption. Virtually no Zodlin appears in the feces, while approximately 6% of the dose appears in the feces as metabolite B, and 3% as metabolite A.

A small degree of nonlinearity in clearance was observed with increasing doses of Zodlin, which appears to be due to lower renal and nonrenal clearance of Zodlin at higher concentrations. However, the difference in clearance was small and was not reflected in the apparent elimination half-life.

Specific Populations

Geriatric Patients

The pharmacokinetics of Zodlin are not significantly altered in elderly patients (65 years or older). Therefore, dose adjustment for geriatric patients is not necessary.

Pediatric Patients

The pharmacokinetics of Zodlin following a single intravenous dose were investigated in pediatric patients ranging in age from birth through 17 years (including premature and full-term neonates), in healthy adolescent subjects ranging in age from 12 through 17 years, and in pediatric patients ranging in age from 1 week through 12 years. The pharmacokinetic parameters of Zodlin are summarized in Table 9 for the pediatric populations studied and healthy adult subjects after administration of single intravenous doses.

The Cmax and the volume of distribution (Vss) of Zodlin are similar regardless of age in pediatric patients. However, plasma clearance of Zodlin varies as a function of age. With the exclusion of pre-term neonates less than one week of age, weight-based clearance is most rapid in the youngest age groups ranging from < 1 week old to 11 years, resulting in lower single-dose systemic exposure (AUC) and a shorter half-life as compared with adults. As the age of pediatric patients increases, the weight-based clearance of Zodlin gradually decreases, and by adolescence mean clearance values approach those observed for the adult population. There is increased inter-subject variability in Zodlin clearance and systemic drug exposure (AUC) across all pediatric age groups as compared with adults.

Similar mean daily AUC values were observed in pediatric patients from birth to 11 years of age dosed every 8 hours relative to adolescents or adults dosed every 12 hours. Therefore, the dosage for pediatric patients up to 11 years of age should be 10 mg/kg every 8 hours. Pediatric patients 12 years and older should receive 600 mg every 12 hours [see Dosage and Administration (2) ].

Age Group Cmax

mcg/mL

Vss

L/kg

AUC AUC = Single dose AUC0–∞

mcg∙h/mL

t 1/2

hrs

CL

mL/min/kg

Cmax = Maximum plasma concentration; Vss= Volume of distribution; AUC = Area under concentration-time curve;

t1/2 = Apparent elimination half-life; CL = Systemic clearance normalized for body weight

Neonatal Patients
Pre-termIn this data set, "pre-term" is defined as <34 weeks gestational age (Note: Only 1 patient enrolled was pre-term with a postnatal age between 1 week and 28 days) 12.7 (30%) 0.81 (24%) 108 (47%) 5.6 (46%) 2.0 (52%)
< 1 week (N=9)Dose of 10 mg/kg [9.6, 22.2] [0.43, 1.05] [41, 191] [2.4, 9.8] [0.9, 4.0]
Full-termIn this data set, "full-term" is defined as ≥34 weeks gestational age 11.5 (24%) 0.78 (20%) 55 (47%) 3.0 (55%) 3.8 (55%)
< 1 week (N=10) [8.0, 18.3] [0.45, 0.96] [19, 103] [1.3, 6.1] [1.5, 8.8]
Full-term 12.9 (28%) 0.66 (29%) 34 (21%) 1.5 (17%) 5.1 (22%)
≥ 1 week to ≤ 28 days (N=10) [7.7, 21.6] [0.35, 1.06] [23, 50] [1.2, 1.9] [3.3, 7.2]
Infant Patients
> 28 days to < 3 Months (N=12) 11.0 (27%)

[7.2, 18.0]

0.79 (26%)

[0.42, 1.08]

33 (26%)

[17, 48]

1.8 (28%)

[1.2, 2.8]

5.4 (32%)

[3.5, 9.9]

Pediatric Patients
3 months through 11 years (N=59) 15.1 (30%)

[6.8, 36.7]

0.69 (28%)

[0.31, 1.50]

58 (54%)

[19, 153]

2.9 (53%)

[0.9, 8.0]

3.8 (53%)

[1.0, 8.5]

Adolescent Subjects and Patients
12 through 17 yearsDose of 600 mg or 10 mg/kg up to a maximum of 600 mg (N=36) 16.7 (24%)

[9.9, 28.9]

0.61 (15%)

[0.44, 0.79]

95 (44%)

[32, 178]

4.1 (46%)

[1.3, 8.1]

2.1 (53%)

[0.9, 5.2]

Adult SubjectsDose normalized to 600 mg 12.5 (21%) 0.65 (16%) 91 (33%) 4.9 (35%) 1.7 (34%)
(N= 29) [8.2, 19.3] [0.45, 0.84] [53, 155] [1.8, 8.3] [0.9, 3.3]

Gender

Females have a slightly lower volume of distribution of Zodlin than males. Plasma concentrations are higher in females than in males, which is partly due to body weight differences. After a 600-mg dose, mean oral clearance is approximately 38% lower in females than in males. However, there are no significant gender differences in mean apparent elimination-rate constant or half-life. Thus, drug exposure in females is not expected to substantially increase beyond levels known to be well tolerated. Therefore, dose adjustment by gender does not appear to be necessary.

Renal Impairment

The pharmacokinetics of the parent drug, Zodlin, are not altered in patients with any degree of renal impairment; however, the two primary metabolites of Zodlin accumulate in patients with renal impairment, with the amount of accumulation increasing with the severity of renal dysfunction. The pharmacokinetics of Zodlin and its two metabolites have also been studied in patients with end-stage renal disease (ESRD) receiving hemodialysis. In the ESRD study, 14 patients were dosed with Zodlin 600 mg every 12 hours for 14.5 days. Because similar plasma concentrations of Zodlin are achieved regardless of renal function, no dose adjustment is recommended for patients with renal impairment. However, given the absence of information on the clinical significance of accumulation of the primary metabolites, use of Zodlin in patients with renal impairment should be weighed against the potential risks of accumulation of these metabolites. Both Zodlin and the two metabolites are eliminated by hemodialysis. No information is available on the effect of peritoneal dialysis on the pharmacokinetics of Zodlin. Approximately 30% of a dose was eliminated in a 3-hour hemodialysis session beginning 3 hours after the dose of Zodlin was administered; therefore, Zodlin should be given after hemodialysis.

Parameter Healthy Subjects CLCR > 80 mL/min Moderate Renal Impairment 30 < CLCR < 80 mL/min Severe Renal Impairment 10 < CLCR < 30 mL/min
Zodlin
AUC0–∞, mcg h/mL 110 (22) 128 (53) 127 (66)
t1/2, hours 6.4 (2.2) 6.1 (1.7) 7.1 (3.7)
METABOLITE A
AUC0–48, mcg h/mL 7.6 (1.9) 11.7 (4.3) 56.5 (30.6)
t1/2, hours 6.3 (2.1) 6.6 (2.3) 9.0 (4.6)
METABOLITE B Metabolite B is the major metabolite of Zodlin.
AUC0–48, mcg h/mL 30.5 (6.2) 51.1 (38.5) 203 (92)
t1/2, hours 6.6 (2.7) 9.9 (7.4) 11.0 (3.9)
Parameter ESRD Subjectsbetween hemodialysis sessions
Zodlin
AUC0–12, mcg h/mL (after last dose) 181 (52.3)
t1/2, h (after last dose) 8.3 (2.4)
METABOLITE A
AUC0–12, mcg h/mL (after last dose) 153 (40.6)
t1/2, h (after last dose) 15.9 (8.5)
METABOLITE B Metabolite B is the major metabolite of Zodlin.
AUC0–12, mcg h/mL (after last dose) 356 (99.7)
t1/2, h (after last dose) 34.8 (23.1)

Hepatic Impairment

The pharmacokinetics of Zodlin are not altered in patients (n=7) with mild-to-moderate hepatic impairment (Child-Pugh class A or B). On the basis of the available information, no dose adjustment is recommended for patients with mild-to-moderate hepatic impairment. The pharmacokinetics of Zodlin in patients with severe hepatic impairment have not been evaluated.

Figure 1

Drug Interactions

Drugs Metabolized by Cytochrome P450

Zodlin is not an inducer of cytochrome P450 (CYP450) in rats. In addition, Zodlin does not inhibit the activities of clinically significant human CYP isoforms (e.g., 1A2, 2C9, 2C19, 2D6, 2E1, 3A4). Therefore, Zodlin is not expected to affect the pharmacokinetics of other drugs metabolized by these major enzymes. Concurrent administration of Zodlin does not substantially alter the pharmacokinetic characteristics of (S)-warfarin, which is extensively metabolized by CYP2C9. Drugs such as warfarin and phenytoin, which are CYP2C9 substrates, may be given with Zodlin without changes in dosage regimen.

Antibiotics

Aztreonam: The pharmacokinetics of Zodlin or aztreonam are not altered when administered together.

Gentamicin: The pharmacokinetics of Zodlin or gentamicin are not altered when administered together.

Antioxidants

The potential for drug-drug interactions with Zodlin and the antioxidants Vitamin C and Vitamin E was studied in healthy volunteers. Subjects were administered a 600 mg oral dose of Zodlin on Day 1, and another 600 mg dose of Zodlin on Day 8. On Days 2–9, subjects were given either Vitamin C (1000 mg/day) or Vitamin E (800 IU/ day). The AUC0–∞ of Zodlin increased 2.3% when co-administered with Vitamin C and 10.9% when co-administered with Vitamin E. No Zodlin dose adjustment is recommended during co-administration with Vitamin C or Vitamin E.

Strong CYP 3A4 Inducers

Rifampin: The effect of rifampin on the pharmacokinetics of Zodlin was evaluated in a study of 16 healthy adult males. Volunteers were administered oral Zodlin 600 mg twice daily for 5 doses with and without rifampin 600 mg once daily for 8 days. Co-administration of rifampin with Zodlin resulted in a 21% decrease in Zodlin Cmax [90% CI, 15% – 27%] and a 32% decrease in Zodlin AUC0–12 [90% CI, 27% – 37%]. The clinical significance of this interaction is unknown. The mechanism of this interaction is not fully understood and may be related to the induction of hepatic enzymes. Other strong inducers of hepatic enzymes (e.g. carbamazepine, phenytoin, phenobarbital) could cause a similar or smaller decrease in Zodlin exposure.

Monoamine Oxidase Inhibition

Zodlin is a reversible, nonselective inhibitor of monoamine oxidase. Therefore, Zodlin has the potential for interaction with adrenergic and serotonergic agents.

Adrenergic Agents

Some individuals receiving Zodlin may experience a reversible enhancement of the pressor response to indirect-acting sympathomimetic agents, vasopressor or dopaminergic agents. Commonly used drugs such as phenylpropanolamine and pseudoephedrine have been specifically studied. Initial doses of adrenergic agents, such as dopamine or epinephrine, should be reduced and titrated to achieve the desired response.

Tyramine: A significant pressor response has been observed in normal adult subjects receiving Zodlin and tyramine doses of more than 100 mg. Therefore, patients receiving Zodlin need to avoid consuming large amounts of foods or beverages with high tyramine content [see Patient Counseling Information (17) ].

Pseudoephedrine HCl or phenylpropanolamine HCl: A reversible enhancement of the pressor response of either pseudoephedrine HCl (PSE) or phenylpropanolamine HCl (PPA) is observed when Zodlin is administered to healthy normotensive subjects [see Warnings and Precautions (5.6) and Drug Interactions (7) ]. A similar study has not been conducted in hypertensive patients. The interaction studies conducted in normotensive subjects evaluated the blood pressure and heart rate effects of placebo, PPA or PSE alone, Zodlin alone, and the combination of steady-state Zodlin (600 mg every 12 hours for 3 days) with two doses of PPA (25 mg) or PSE (60 mg) given 4 hours apart. Heart rate was not affected by any of the treatments. Blood pressure was increased with both combination treatments. Maximum blood pressure levels were seen 2 to 3 hours after the second dose of PPA or PSE, and returned to baseline 2 to 3 hours after peak. The results of the PPA study follow, showing the mean (and range) maximum systolic blood pressure in mm Hg: placebo = 121 (103 to 158); Zodlin alone = 120 (107 to 135); PPA alone = 125 (106 to 139); PPA with Zodlin = 147 (129 to 176). The results from the PSE study were similar to those in the PPA study. The mean maximum increase in systolic blood pressure over baseline was 32 mm Hg (range: 20–52 mm Hg) and 38 mm Hg (range: 18–79 mm Hg) during co-administration of Zodlin with pseudoephedrine or phenylpropanolamine, respectively.

Serotonergic Agents

Dextromethorphan: The potential drug-drug interaction with dextromethorphan was studied in healthy volunteers. Subjects were administered dextromethorphan (two 20-mg doses given 4 hours apart) with or without Zodlin. No serotonin syndrome effects (confusion, delirium, restlessness, tremors, blushing, diaphoresis, hyperpyrexia) have been observed in normal subjects receiving Zodlin and dextromethorphan.

12.4 Microbiology

Mechanism of Action

Zodlin is a synthetic antibacterial agent of the oxazolidinone class, which has clinical utility in the treatment of infections caused by aerobic Gram-positive bacteria. The in vitro spectrum of activity of Zodlin also includes certain Gram-negative bacteria and anaerobic bacteria. Zodlin binds to a site on the bacterial 23S ribosomal RNA of the 50S subunit and prevents the formation of a functional 70S initiation complex, which is essential for bacterial reproduction. The results of time-kill studies have shown Zodlin to be bacteriostatic against enterococci and staphylococci. For streptococci, Zodlin was found to be bactericidal for the majority of isolates.

Mechanisms of Resistance

In vitro studies have shown that point mutations in the 23S rRNA are associated with Zodlin resistance. Reports of vancomycin-resistant Enterococcus faecium becoming resistant to Zodlin during its clinical use have been published. There are reports of Staphylococcus aureus (methicillin-resistant) developing resistance to Zodlin during clinical use. The Zodlin resistance in these organisms is associated with a point mutation in the 23S rRNA (substitution of thymine for guanine at position 2576) of the organism. Organisms resistant to oxazolidinones via mutations in chromosomal genes encoding 23S rRNA or ribosomal proteins (L3 and L4) are generally cross-resistant to Zodlin. Also Zodlin resistance in staphylococci mediated by the enzyme methyltransferase has been reported. This resistance is mediated by the cfr (chloramphenicol-florfenicol) gene located on a plasmid which is transferable between staphylococci.

Interaction with Other Antimicrobial Drugs

In vitro studies have demonstrated additivity or indifference between Zodlin and vancomycin, gentamicin, rifampin, imipenem-cilastatin, aztreonam, ampicillin, or streptomycin.

Zodlin has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections [see Indications and Usage (1) ].

Gram-positive bacteria

Enterococcus faecium (vancomycin-resistant isolates only)

Staphylococcus aureus (including methicillin-resistant isolates)

Streptococcus agalactiae

Streptococcus pneumoniae

Streptococcus pyogenes

The following in vitro data are available, but their clinical significance is unknown. Greater than 90% of the following bacteria exhibit an in vitro MIC less than or equal to the linezolid-susceptible breakpoint for organisms of similar genus shown in Table 12. The safety and effectiveness of Zodlin in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.

Gram-positive bacteria

Enterococcus faecalis (including vancomycin-resistant isolates)

Enterococcus faecium (vancomycin-susceptible isolates)

Staphylococcus epidermidis (including methicillin-resistant isolates)

Staphylococcus haemolyticus

Viridans group streptococci

Gram-negative bacteria

Pasteurella multocida

Susceptibility Test Methods

When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drug products used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.

Dilution techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized method1,2 (broth and/or agar). The MIC values should be interpreted according to criteria provided in Table 12.

Diffusion techniques

Quantitative methods that require measurement of zone diameters can also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size provides an estimate of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized test method2,3. This procedure uses paper disks impregnated with 30 mcg Zodlin to test the susceptibility of bacteria to Zodlin. The disk diffusion interpretive criteria are provided in Table 12.

Susceptibility Interpretive Criteria
Pathogen Minimal Inhibitory Concentrations

(MIC in mcg/mL)

Disk Diffusion

(Zone Diameters in mm)

S I R S I R
S=susceptible, I=intermediate, R=resistant
Enterococcus spp ≤2 4 ≥8 ≥23 21–22 ≤20
Staphylococcus sppFor disk diffusion testing of staphylococcal species, petri plates should be held up to the light source and read with transmitted light. The zone margin should be considered the area showing no obvious, visible growth that can be detected with the unaided eye. Ignore faint growth of tiny colonies that can be detected only with a magnifying lens at the edge of the zone of inhibited growth. Any discernible growth within the zone of inhibition is indicative of resistance. Resistant results obtained by the disk diffusion method should be confirmed using an MIC method. ≤4 --- ≥8 ≥21 --- ≤20
Streptococcus pneumoniae The current absence of data on resistant isolates precludes defining any categories other than "Susceptible." Isolates yielding test results suggestive of a "nonsusceptible" category should be retested, and if the result is confirmed, the isolate should be submitted to a reference laboratory for further testing. ≤2 --- --- ≥21 --- ---
Streptococcus spp other than S pneumoniae ≤2 --- --- ≥21 --- ---

A report of "Susceptible" indicates that the antimicrobial drug is likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the site of infection. A report of "Intermediate" indicates that the result should be considered equivocal, and, if the bacteria is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug product is physiologically concentrated or in situations where a high dosage of the drug product can be used. This category also provides a buffer zone that prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" indicates that the antimicrobial is not likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the site of infection; other therapy should be selected.

Quality Control

Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test1,2,3. Standard Zodlin powder should provide the following range of MIC values noted in Table 13. For the diffusion technique using the 30 mcg Zodlin disk, the criteria in Table 13 should be achieved.

Minimum Inhibitory Ranges

(MIC in mcg/mL)

Disk Diffusion Ranges

Zone Diameters (mm)

Enterococcus faecalis ATCC 29212 1 – 4 Not applicable
Staphylococcus aureus ATCC 29213 1 – 4 Not applicable
Staphylococcus aureus ATCC 25923 Not applicable 25 – 32

Streptococcus pneumoniae

ATCC 49619This organism may be used for validation of susceptibility test results when testing Streptococcus spp. other than S. pneumoniae.

0.25 – 2 25 – 34

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Lifetime studies in animals have not been conducted to evaluate the carcinogenic potential of Zodlin. Neither mutagenic nor clastogenic potential was found in a battery of tests including: assays for mutagenicity, an in vitro unscheduled DNA synthesis (UDS) assay, an in vitro chromosome aberration assay in human lymphocytes, and an in vivo mouse micronucleus assay.

Zodlin did not affect the fertility or reproductive performance of adult female rats. It reversibly decreased fertility and reproductive performance in adult male rats when given at doses ≥ 50 mg/kg/day, with exposures approximately equal to or greater than the expected human exposure level (exposure comparisons are based on AUCs). The reversible fertility effects were mediated through altered spermatogenesis. Affected spermatids contained abnormally formed and oriented mitochondria and were non-viable. Epithelial cell hypertrophy and hyperplasia in the epididymis was observed in conjunction with decreased fertility. Similar epididymal changes were not seen in dogs.

In sexually mature male rats exposed to drug as juveniles, mildly decreased fertility was observed following treatment with Zodlin through most of their period of sexual development (50 mg/kg/day from days 7 to 36 of age, and 100 mg/kg/day from days 37 to 55 of age), with exposures up to 1.7-fold greater than mean AUCs observed in pediatric patients aged 3 months to 11 years. Decreased fertility was not observed with shorter treatment periods, corresponding to exposure in utero through the early neonatal period (gestation day 6 through postnatal day 5), neonatal exposure (postnatal days 5 to 21), or to juvenile exposure (postnatal days 22 to 35). Reversible reductions in sperm motility and altered sperm morphology were observed in rats treated from postnatal day 22 to 35.

13.2 Animal Toxicology and/or Pharmacology

Target organs of Zodlin toxicity were similar in juvenile and adult rats and dogs. Dose- and time-dependent myelosuppression, as evidenced by bone marrow hypocellularity/decreased hematopoiesis, decreased extramedullary hematopoiesis in spleen and liver, and decreased levels of circulating erythrocytes, leukocytes, and platelets have been seen in animal studies. Lymphoid depletion occurred in thymus, lymph nodes, and spleen. Generally, the lymphoid findings were associated with anorexia, weight loss, and suppression of body weight gain, which may have contributed to the observed effects.

In rats administered Zodlin orally for 6 months, non-reversible, minimal to mild axonal degeneration of sciatic nerves was observed at 80 mg/kg/day; minimal degeneration of the sciatic nerve was also observed in 1 male at this dose level at a 3-month interim necropsy. Sensitive morphologic evaluation of perfusion-fixed tissues was conducted to investigate evidence of optic nerve degeneration. Minimal to moderate optic nerve degeneration was evident in 2 male rats after 6 months of dosing, but the direct relationship to drug was equivocal because of the acute nature of the finding and its asymmetrical distribution. The nerve degeneration observed was microscopically comparable to spontaneous unilateral optic nerve degeneration reported in aging rats and may be an exacerbation of common background change.

These effects were observed at exposure levels that are comparable to those observed in some human subjects. The hematopoietic and lymphoid effects were reversible, although in some studies, reversal was incomplete within the duration of the recovery period.

14 CLINICAL STUDIES

14.1 Adults

Nosocomial Pneumonia

Adult patients with clinically and radiologically documented nosocomial pneumonia were enrolled in a randomized, multi-center, double-blind trial. Patients were treated for 7 to 21 days. One group received Zodlin I.V. Injection 600 mg every 12 hours, and the other group received vancomycin 1 g every 12 hours intravenously. Both groups received concomitant aztreonam, which could be continued if clinically indicated. There were 203 linezolid-treated and 193 vancomycin-treated patients enrolled in the study. One hundred twenty-two (60%) linezolid-treated patients and 103 (53%) vancomycin-treated patients were clinically evaluable. The cure rates in clinically evaluable patients were 57% for linezolid-treated patients and 60% for vancomycin-treated patients. The cure rates in clinically evaluable patients with ventilator-associated pneumonia were 47% for linezolid-treated patients and 40% for vancomycin-treated patients. A modified intent-to-treat (MITT) analysis of 94 linezolid-treated patients and 83 vancomycin-treated patients included subjects who had a pathogen isolated before treatment. The cure rates in the MITT analysis were 57% in linezolid-treated patients and 46% in vancomycin-treated patients. The cure rates by pathogen for microbiologically evaluable patients are presented in Table 14.

Cured
Pathogen Zodlin

n/N (%)

Vancomycin

n/N (%)

Staphylococcus aureus 23/38 (61) 14/23 (61)
Methicillin-resistant S. aureus 13/22 (59) 7/10 (70)
Streptococcus pneumonia 9/9 (100) 9/10 (90)

Complicated Skin and Skin Structure Infections

Adult patients with clinically documented complicated skin and skin structure infections were enrolled in a randomized, multi-center, double-blind, double-dummy trial comparing study medications administered intravenously followed by medications given orally for a total of 10 to 21 days of treatment. One group of patients received Zodlin I.V. Injection 600 mg every 12 hours followed by Zodlin Tablets 600 mg every 12 hours; the other group received oxacillin 2 g every 6 hours intravenously followed by dicloxacillin 500 mg every 6 hours orally. Patients could receive concomitant aztreonam if clinically indicated. There were 400 linezolid-treated and 419 oxacillin-treated patients enrolled in the study. Two hundred forty-five (61%) linezolid-treated patients and 242 (58%) oxacillin-treated patients were clinically evaluable. The cure rates in clinically evaluable patients were 90% in linezolid-treated patients and 85% in oxacillin-treated patients. A modified intent-to-treat (MITT) analysis of 316 linezolid-treated patients and 313 oxacillin-treated patients included subjects who met all criteria for study entry. The cure rates in the MITT analysis were 86% in linezolid-treated patients and 82% in oxacillin-treated patients. The cure rates by pathogen for microbiologically evaluable patients are presented in Table 15.

Cured
Pathogen Zodlin

n/N (%)

Oxacillin/Dicloxacillin

n/N (%)

Staphylococcus aureus 73/83 (88) 72/84 (86)
Methicillin-resistant S. aureus 2/3 (67) 0/0 (-)
Streptococcus agalactiae 6/6 (100) 3/6 (50)
Streptococcus pyogenes 18/26 (69) 21/28 (75)

A separate study provided additional experience with the use of Zodlin in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. This was a randomized, open-label trial in hospitalized adult patients with documented or suspected MRSA infection.

One group of patients received Zodlin I.V. Injection 600 mg every 12 hours followed by Zodlin Tablets 600 mg every 12 hours. The other group of patients received vancomycin 1 g every 12 hours intravenously. Both groups were treated for 7 to 28 days, and could receive concomitant aztreonam or gentamicin if clinically indicated. The cure rates in microbiologically evaluable patients with MRSA skin and skin structure infection were 26/33 (79%) for linezolid-treated patients and 24/33 (73%) for vancomycin-treated patients.

Diabetic Foot Infections

Adult diabetic patients with clinically documented complicated skin and skin structure infections ("diabetic foot infections") were enrolled in a randomized (2:1 ratio), multi-center, open-label trial comparing study medications administered intravenously or orally for a total of 14 to 28 days of treatment. One group of patients received Zodlin 600 mg every 12 hours intravenously or orally; the other group received ampicillin/sulbactam 1.5 to 3 g intravenously or amoxicillin/clavulanate 500 to 875 mg every 8 to 12 hours orally. In countries where ampicillin/sulbactam is not marketed, amoxicillin/clavulanate 500 mg to 2 g every 6 hours was used for the intravenous regimen. Patients in the comparator group could also be treated with vancomycin 1 g every 12 hours intravenously if MRSA was isolated from the foot infection. Patients in either treatment group who had Gram-negative bacilli isolated from the infection site could also receive aztreonam 1 to 2 g every 8–12 hours intravenously. All patients were eligible to receive appropriate adjunctive treatment methods, such as debridement and off-loading, as typically required in the treatment of diabetic foot infections, and most patients received these treatments. There were 241 linezolid-treated and 120 comparator-treated patients in the intent-to-treat (ITT) study population. Two hundred twelve (86%) linezolid-treated patients and 105 (85%) comparator-treated patients were clinically evaluable. In the ITT population, the cure rates were 68.5% (165/241) in linezolid-treated patients and 64% (77/120) in comparator-treated patients, where those with indeterminate and missing outcomes were considered failures. The cure rates in the clinically evaluable patients (excluding those with indeterminate and missing outcomes) were 83% (159/192) and 73% (74/101) in the linezolid- and comparator-treated patients, respectively. A critical post-hoc analysis focused on 121 linezolid-treated and 60 comparator-treated patients who had a Gram-positive pathogen isolated from the site of infection or from blood, who had less evidence of underlying osteomyelitis than the overall study population, and who did not receive prohibited antimicrobials. Based upon that analysis, the cure rates were 71% (86/121) in the linezolid-treated patients and 63% (38/60) in the comparator-treated patients. None of the above analyses were adjusted for the use of adjunctive therapies. The cure rates by pathogen for microbiologically evaluable patients are presented in Table 16.

Cured
Pathogen Zodlin

n/N (%)

Comparator

n/N (%)

Staphylococcus aureus 49/63 (78) 20/29 (69)
Methicillin-resistant S. aureus 12/17 (71) 2/3 (67)
Streptococcus agalactiae 25/29 (86) 9/16 (56)

Vancomycin-Resistant Enterococcal Infections

Adult patients with documented or suspected vancomycin-resistant enterococcal infection were enrolled in a randomized, multi-center, double-blind trial comparing a high dose of Zodlin (600 mg) with a low dose of Zodlin (200 mg) given every 12 hours either intravenously (IV) or orally for 7 to 28 days. Patients could receive concomitant aztreonam or aminoglycosides. There were 79 patients randomized to high-dose Zodlin and 66 to low-dose Zodlin. The intent-to-treat (ITT) population with documented vancomycin-resistant enterococcal infection at baseline consisted of 65 patients in the high-dose arm and 52 in the low-dose arm.

The cure rates for the ITT population with documented vancomycin-resistant enterococcal infection at baseline are presented in Table 17 by source of infection. These cure rates do not include patients with missing or indeterminate outcomes. The cure rate was higher in the high-dose arm than in the low-dose arm, although the difference was not statistically significant at the 0.05 level.

Cured
Source of Infection Zodlin

600 mg every 12 hours

n/N (%)

Zodlin

200 mg every 12 hours

n/N (%)

Any site 39/58 (67) 24/46 (52)
Any site with associated bacteremia 10/17 (59) 4/14 (29)
Bacteremia of unknown origin 5/10 (50) 2/7 (29)
Skin and skin structure 9/13 (69) 5/5 (100)
Urinary tract 12/19 (63) 12/20 (60)
Pneumonia 2/3 (67) 0/1 (0)
OtherIncludes sources of infection such as hepatic abscess, biliary sepsis, necrotic gall bladder, pericolonic abscess, pancreatitis, and catheter-related infection. 11/13 (85) 5/13 (39)

14.2 Pediatric Patients

Infections due to Gram-positive Bacteria

A safety and efficacy study provided experience on the use of Zodlin in pediatric patients for the treatment of nosocomial pneumonia, complicated skin and skin structure infections, and other infections due to Gram-positive bacterial pathogens, including methicillin-resistant and -susceptible Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Pediatric patients ranging in age from birth through 11 years with infections caused by the documented or suspected Gram-positive bacteria were enrolled in a randomized, open-label, comparator-controlled trial. One group of patients received Zodlin I.V. Injection 10 mg/kg every 8 hours followed by Zodlin for Oral Suspension 10 mg/kg every 8 hours. A second group received vancomycin 10 to 15 mg/kg intravenously every 6 to 24 hours, depending on age and renal clearance. Patients who had confirmed VRE infections were placed in a third arm of the study and received Zodlin 10 mg/kg every 8 hours intravenously and/or orally. All patients were treated for a total of 10 to 28 days and could receive concomitant Gram-negative antibiotics if clinically indicated. In the intent-to-treat (ITT) population, there were 206 patients randomized to Zodlin and 102 patients randomized to vancomycin. The cure rates for ITT, MITT, and clinically evaluable patients are presented in Table 18. After the study was completed, 13 additional patients ranging from 4 days through 16 years of age were enrolled in an open-label extension of the VRE arm of the study. Table 19 provides clinical cure rates by pathogen for microbiologically evaluable patients including microbiologically evaluable patients with vancomycin-resistant Enterococcus faecium from the extension of this study.

ITT MITTMITT = ITT patients with an isolated Gram-positive pathogen at baseline Clinically Evaluable
Population Zodlin

n/N (%)

Vancomycin

n/N (%)

Zodlin

n/N (%)

Vancomycin

n/N (%)

Zodlin

n/N (%)

Vancomycin

n/N (%)

Any diagnosis

150/186 (81) 69/83 (83) 86/108 (80) 44/49 (90) 106/117 (91) 49/54 (91)
Complicated skin and skin structure infections 61/72 (85) 31/34 (91) 37/43 (86) 22/23 (96) 46/49 (94) 26/27 (96)
Nosocomial pneumonia 13/18 (72) 11/12 (92) 5/6 (83) 4/4 (100) 7/7 (100) 5/5 (100)
Microbiologically Evaluable
Pathogen Zodlin

n/N (%)

Vancomycin

n/N (%)

Vancomycin-resistant Enterococcus faecium 6/8 (75) Includes data from 7 patients enrolled in the open-label extension of this study. 0/0 (-)
Staphylococcus aureus 36/38 (95) 23/24 (96)
Methicillin-resistant S. aureus 16/17 (94) 9/9 (100)
Streptococcus pyogenes 2/2 (100) 1/2 (50)

15 REFERENCES

16 HOW SUPPLIED/STORAGE AND HANDLING

16.1 Injection

Zodlin I.V. Injection is available in single-use, ready-to-use flexible plastic infusion bags in a foil laminate overwrap. The infusion bags and ports are latex-free. The infusion bags are available in the following package sizes:

100 mL bag NDC 0009-5137-01
100 mL bag (200 mg Zodlin) × 10 NDC 0009-5137-04
200 mL bag (400 mg Zodlin) NDC 0009-5139-01
300 mL bag (600 mg Zodlin) NDC 0009-5140-01
300 mL bag (600 mg Zodlin) × 10 NDC 0009-5140-04

16.2 Tablets

Zodlin Tablets are available as follows:

600 mg (white, capsule-shaped, film-coated tablets printed with "ZYVOX 600 mg")

100 tablets in HDPE bottle NDC 0009-5135-01
20 tablets in HDPE bottle NDC 0009-5135-02
Unit dose packages of 30 tablets NDC 0009-5135-03

600 mg (white, capsule-shaped, film-coated tablets debossed with "ZYV" on one side and "600" on the other)

20 tablets in HDPE bottle NDC 0009-5138-02
Unit dose packages of 30 tablets NDC 0009-5138-03

16.3 Oral Suspension

Zodlin for Oral Suspension is available as a dry, white to off-white, orange-flavored granule/powder. When constituted as directed, each bottle will contain 150 mL of a suspension providing the equivalent of 100 mg of Zodlin per each 5 mL. Zodlin for Oral Suspension is supplied as follows:

100 mg/5 mL in 240-mL glass bottles NDC 0009-5136-01

16.4 Storage

Store at 25°C (77°F). Protect from light. Keep bottles tightly closed to protect from moisture. It is recommended that the infusion bags be kept in the overwrap until ready to use. Protect infusion bags from freezing.

17 PATIENT COUNSELING INFORMATION

Patients should be counseled that antibacterial drugs including Zodlin should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Zodlin is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Zodlin or other antibacterial drugs in the future.

Patients should be advised that:


LAB-0139-30.0

Logo

NDC 0009-5137-01

Rx only

Zodlin ®

(linezolid) injection

200 mg/100 mL

Store at 25°C (77°F);

excursions permitted to

15-30°C (59-86°F) [see USP

Controlled Room

Temperature]. Do not freeze.

Each mL contains:

Zodlin 2 mg

dextrose, USP 50.24 mg

sodium citrate, USP 1.64 mg

citric acid, USP 0.85 mg

water for injection, USP qs

pH adjusted to 4.8 with sodium

hydroxide or hydrochloric acid.

Sterile and nonpyrogenic.

Single dose container.

LOT

Do not use in series

connections.

For intravenous administration

Check for leaks by squeezing

container. If leaks are found,

discard, as sterility may be

impaired.

Zodlin is sensitive to light.

Retain overwrap prior to use.

DOSAGE AND USE: See

accompanying prescribing

information.

MADE IN SINGAPORE

Pfizer Injectables

Distributed by:

Pharmacia & Upjohn Co

Division of Pfizer Inc,

NY, NY 10017

7

OTHER

EXP

FUU 0701 01-78-26-019B

NDC 0009-5137-04

Contains 10 of NDC 0009-5137-01

QUANTITY: 1 (10 IV BAGS X 100 mL)

Zodlin ® 200 mg/100 mL

(LINEZOLID) INJECTION

RX ONLY

STORE AT 25°C (77°F); EXCURSIONS PERMITTED TO 15-30°C (59-86°F) [SEE USP

CONTROLLED ROOM TEMPERATURE]. DO NOT FREEZE.

DISTRIBUTED BY

PHARMACIA &

UPJOHN DIVISION

OF PFIZER INC,

NY, NY 10017

MADE IN SINGAPORE

Pfizer Injectables

EXP 00/0000

LOT 00 00 00

FUU 0701 01-88-26-019D

NDC 0009-5140-01

Rx only

Zodlin ®

(linezolid) injection

600 mg/300 mL

Store at 25°C (77°F);

excursions permitted to

15-30°C (59-86°F) [see USP

Controlled Room

Temperature]. Do not freeze.

Each mL contains:

Zodlin 2 mg

dextrose, USP 50.24 mg

sodium citrate, USP 1.64 mg

citric acid, USP 0.85 mg

water for injection, USP qs

pH adjusted to 4.8 with sodium

hydroxide or hydrochloric acid.

Sterile and nonpyrogenic.

Single dose container.

LOT

Do not use in series

connections.

For intravenous administration

Check for leaks by squeezing

container. If leaks are found,

discard, as sterility may be

impaired.

Zodlin is sensitive to light.

Retain overwrap prior to use.

DOSAGE AND USE: See

accompanying prescribing

information.

MADE IN SINGAPORE

Pfizer Injectables

Distributed by:

Pharmacia & Upjohn Co

Division of Pfizer Inc,

NY, NY 10017

7

OTHER

EXP

FUU 0703 01-78-26-020B

NDC 0009-5140-04

Contains 10 of NDC 0009-5140-01

QUANTITY: 1 (10 IV BAGS X 300 mL)

Zodlin ® 600 mg/300 mL

(LINEZOLID) INJECTION

RX ONLY

STORE AT 25°C (77°F); EXCURSIONS PERMITTED TO 15-30°C (59-86°F) [SEE USP

CONTROLLED ROOM TEMPERATURE]. DO NOT FREEZE.

DISTRIBUTED BY

PHARMACIA &

UPJOHN DIVISION

OF PFIZER INC,

NY, NY 10017

MADE IN SINGAPORE

Pfizer Injectables

EXP 00/0000

LOT 00 00 00

FUU 0703 01-88-26-020D

Pfizer

NDC 0009-5135-02

Zodlin®

(linezolid) tablets

600 mg

20 Tablets

Rx only

Zodlin pharmaceutical active ingredients containing related brand and generic drugs:

Active ingredient is the part of the drug or medicine which is biologically active. This portion of the drug is responsible for the main action of the drug which is intended to cure or reduce the symptom or disease. The other portions of the drug which are inactive are called excipients; there role is to act as vehicle or binder. In contrast to active ingredient, the inactive ingredient's role is not significant in the cure or treatment of the disease. There can be one or more active ingredients in a drug.


Zodlin available forms, composition, doses:

Form of the medicine is the form in which the medicine is marketed in the market, for example, a medicine X can be in the form of capsule or the form of chewable tablet or the form of tablet. Sometimes same medicine can be available as injection form. Each medicine cannot be in all forms but can be marketed in 1, 2, or 3 forms which the pharmaceutical company decided based on various background research results.
Composition is the list of ingredients which combinedly form a medicine. Both active ingredients and inactive ingredients form the composition. The active ingredient gives the desired therapeutic effect whereas the inactive ingredient helps in making the medicine stable.
Doses are various strengths of the medicine like 10mg, 20mg, 30mg and so on. Each medicine comes in various doses which is decided by the manufacturer, that is, pharmaceutical company. The dose is decided on the severity of the symptom or disease.


Zodlin destination | category:

Destination is defined as the organism to which the drug or medicine is targeted. For most of the drugs what we discuss, human is the drug destination.
Drug category can be defined as major classification of the drug. For example, an antihistaminic or an antipyretic or anti anginal or pain killer, anti-inflammatory or so.


Zodlin Anatomical Therapeutic Chemical codes:

A medicine is classified depending on the organ or system it acts [Anatomical], based on what result it gives on what disease, symptom [Therapeutical], based on chemical composition [Chemical]. It is called as ATC code. The code is based on Active ingredients of the medicine. A medicine can have different codes as sometimes it acts on different organs for different indications. Same way, different brands with same active ingredients and same indications can have same ATC code.


Zodlin pharmaceutical companies:

Pharmaceutical companies are drug manufacturing companies that help in complete development of the drug from the background research to formation, clinical trials, release of the drug into the market and marketing of the drug.
Researchers are the persons who are responsible for the scientific research and is responsible for all the background clinical trials that resulted in the development of the drug.


advertisement

References

  1. Dailymed."ZYVOX (LINEZOLID) INJECTION, SOLUTION ZYVOX (LINEZOLID) TABLET, FILM COATED ZYVOX (LINEZOLID) SUSPENSION [PHARMACIA AND UPJOHN COMPANY LLC]". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  2. Dailymed."LINEZOLID: DailyMed provides trustworthy information about marketed drugs in the United States. DailyMed is the official provider of FDA label information (package inserts).". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  3. "linezolid". https://pubchem.ncbi.nlm.nih.gov/co... (accessed August 28, 2018).

Frequently asked Questions

Can i drive or operate heavy machine after consuming Zodlin?

Depending on the reaction of the Zodlin after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Zodlin not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.

Is Zodlin addictive or habit forming?

Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.

Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.

advertisement

Review

sdrugs.com conducted a study on Zodlin, and the result of the survey is set out below. It is noteworthy that the product of the survey is based on the perception and impressions of the visitors of the website as well as the views of Zodlin consumers. We, as a result of this, advice that you do not base your therapeutic or medical decisions on this result, but rather consult your certified medical experts for their recommendations.

Visitor reports

Visitor reported useful

No survey data has been collected yet

Visitor reported side effects

No survey data has been collected yet

Visitor reported price estimates

No survey data has been collected yet

Visitor reported frequency of use

No survey data has been collected yet

Visitor reported doses

No survey data has been collected yet

Visitor reported time for results

No survey data has been collected yet

Visitor reported administration

No survey data has been collected yet

Visitor reported age

No survey data has been collected yet

Visitor reviews


There are no reviews yet. Be the first to write one!


Your name: 
Email: 
Spam protection:  < Type 28 here

The information was verified by Dr. Rachana Salvi, MD Pharmacology

© 2002 - 2024 "sdrugs.com". All Rights Reserved