|
|||
DRUGS & SUPPLEMENTS
|
How often in a day do you take medicine? How many times? |
An increase in all-cause mortality has been observed in a meta-analysis of Phase 3 and 4 clinical trials in TYGACIL-treated patients versus comparator. The cause of this mortality risk difference of 0.6% (95% CI 0.1, 1.2) has not been established. Tygacil should be reserved for use in situations when alternative treatments are not suitable.
WARNING: ALL-CAUSE MORTALITY
See full prescribing information for complete boxed warning.
All-cause mortality was higher in patients treated with Tygacil than comparators in a meta-analysis of clinical trials. The cause of this mortality risk difference of 0.6% (95% CI 0.1, 1.2) has not been established. Tygacil should be reserved for use in situations when alternative treatments are not suitable (1.4, 5.1, 5.2, 6.1).
Tygacil is a tetracycline class antibacterial indicated in patients 18 years of age and older for:
Limitations of Use: Tygacil is not indicated for treatment of diabetic foot infection or hospital-acquired pneumonia, including ventilator-associated pneumonia (1.4).
To reduce the development of drug-resistant bacteria and maintain the effectiveness of Tygacil and other antibacterial drugs, Tygacil should be used only to treat infections that are proven or strongly suspected to be caused by bacteria
Tygacil for injection is indicated in patients 18 years of age and older for the treatment of complicated skin and skin structure infections caused by susceptible isolates of Escherichia coli, Enterococcus faecalis (vancomycin-susceptible isolates), Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus agalactiae, Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Streptococcus pyogenes, Enterobacter cloacae, Klebsiella pneumoniae, and Bacteroides fragilis.
Tygacil for injection is indicated in patients 18 years of age and older for the treatment of complicated intra-abdominal infections caused by susceptible isolates of Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Enterococcus faecalis , Staphylococcus aureus (methicillin-susceptible and -resistant isolates), Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus), Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides uniformis, Bacteroides vulgatus, Clostridium perfringens, and Peptostreptococcus micros.
Tygacil for injection is indicated in patients 18 years of age and older for the treatment of community-acquired bacterial pneumonia caused by susceptible isolates of Streptococcus pneumoniae (penicillin-susceptible isolates), including cases with concurrent bacteremia, Haemophilus influenzae, and Legionella pneumophila.
TYGACIL is not indicated for the treatment of diabetic foot infections. A clinical trial failed to demonstrate non-inferiority of Tygacil for treatment of diabetic foot infections.
TYGACIL is not indicated for the treatment of hospital-acquired or ventilator-associated pneumonia. In a comparative clinical trial, greater mortality and decreased efficacy were reported in TYGACIL-treated patients .
To reduce the development of drug-resistant bacteria and maintain the effectiveness of Tygacil and other antibacterial drugs, Tygacil should be used only to treat infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.
Appropriate specimens for bacteriological examination should be obtained in order to isolate and identify the causative organisms and to determine their susceptibility to Tygacil. Tygacil may be initiated as empiric monotherapy before results of these tests are known.
The recommended dosage regimen for Tygacil is an initial dose of 100 mg, followed by 50 mg every 12 hours. Intravenous infusions of Tygacil should be administered over approximately 30 to 60 minutes every 12 hours.
The recommended duration of treatment with Tygacil for complicated skin and skin structure infections or for complicated intra-abdominal infections is 5 to 14 days. The recommended duration of treatment with Tygacil for community-acquired bacterial pneumonia is 7 to 14 days. The duration of therapy should be guided by the severity and site of the infection and the patient's clinical and bacteriological progress.
No dosage adjustment is warranted in patients with mild to moderate hepatic impairment. In patients with severe hepatic impairment (Child Pugh C), the initial dose of Tygacil should be 100 mg followed by a reduced maintenance dose of 25 mg every 12 hours. Patients with severe hepatic impairment (Child Pugh C) should be treated with caution and monitored for treatment response .
The safety and efficacy of the proposed pediatric dosing regimens have not been evaluated due to the observed increase in mortality associated with Tygacil in adult patients. Avoid use of Tygacil in pediatric patients unless no alternative antibacterial drugs are available. Under these circumstances, the following doses are suggested:
The proposed pediatric doses of Tygacil were chosen based on exposures observed in pharmacokinetic trials, which included small numbers of pediatric patients .
There are no data to provide dosing recommendations in pediatric patients with hepatic impairment.
Each vial of Tygacil should be reconstituted with 5.3 mL of 0.9% Sodium Chloride Injection, USP, 5% Dextrose Injection, USP, or Lactated Ringer's Injection, USP to achieve a concentration of 10 mg/mL of Tygacil. The vial should be gently swirled until the drug dissolves. Reconstituted solution must be transferred and further diluted for intravenous infusion. Withdraw 5 mL of the reconstituted solution from the vial and add to a 100 mL intravenous bag for infusion (for a 100 mg dose, reconstitute two vials; for a 50 mg dose, reconstitute one vial). The maximum concentration in the intravenous bag should be 1 mg/mL. The reconstituted solution should be yellow to orange in color; if not, the solution should be discarded. Parenteral drug products should be inspected visually for particulate matter and discoloration (e.g., green or black) prior to administration. Once reconstituted, Tygacil may be stored at room temperature (not to exceed 25°C/77°F) for up to 24 hours (up to 6 hours in the vial and the remaining time in the intravenous bag). If the storage conditions exceed 25°C (77°F) after reconstitution, Tygacil should be used immediately. Alternatively, Tygacil mixed with 0.9% Sodium Chloride Injection, USP or 5% Dextrose Injection, USP may be stored refrigerated at 2° to 8°C (36° to 46°F) for up to 48 hours following immediate transfer of the reconstituted solution into the intravenous bag.
Tygacil may be administered intravenously through a dedicated line or through a Y-site. If the same intravenous line is used for sequential infusion of several drugs, the line should be flushed before and after infusion of Tygacil with 0.9% Sodium Chloride Injection, USP, 5% Dextrose Injection, USP or Lactated Ringer's Injection, USP. Injection should be made with an infusion solution compatible with Tygacil and with any other drug(s) administered via this common line.
Compatible intravenous solutions include 0.9% Sodium Chloride Injection, USP, 5% Dextrose Injection, USP, and Lactated Ringer's Injection, USP. When administered through a Y-site, Tygacil is compatible with the following drugs or diluents when used with either 0.9% Sodium Chloride Injection, USP or 5% Dextrose Injection, USP: amikacin, dobutamine, dopamine HCl, gentamicin, haloperidol, Lactated Ringer's, lidocaine HCl, metoclopramide, morphine, norepinephrine, piperacillin/tazobactam (EDTA formulation), potassium chloride, propofol, ranitidine HCl, theophylline, and tobramycin.
The following drugs should not be administered simultaneously through the same Y-site as Tygacil: amphotericin B, amphotericin B lipid complex, diazepam, esomeprazole and omeprazole.
For Injection: Each single-dose 5 mL glass vial and 10 mL glass vial contain 50 mg of Tygacil as an orange lyophilized powder for reconstitution.
For Injection: 50 mg, lyophilized powder for reconstitution in a single-dose 5 mL vial or 10 mL vial. (3)
Tygacil is contraindicated for use in patients who have known hypersensitivity to Tygacil. Reactions have included anaphylactic reactions .
An increase in all-cause mortality has been observed in a meta-analysis of Phase 3 and 4 clinical trials in TYGACIL-treated patients versus comparator-treated patients. In all 13 Phase 3 and 4 trials that included a comparator, death occurred in 4.0% (150/3788) of patients receiving Tygacil and 3.0% (110/3646) of patients receiving comparator drugs. In a pooled analysis of these trials, based on a random effects model by trial weight, the adjusted risk difference of all-cause mortality was 0.6% (95% CI 0.1, 1.2) between Tygacil and comparator-treated patients. An analysis of mortality in all trials conducted for approved indications (cSSSI, cIAI, and CABP), including post-market trials showed an adjusted mortality rate of 2.5% (66/2640) for Tygacil and 1.8% (48/2628) for comparator, respectively. The adjusted risk difference for mortality stratified by trial weight was 0.6% (95% CI 0.0, 1.2).
The cause of this mortality difference has not been established. Generally, deaths were the result of worsening infection, complications of infection or underlying co-morbidities. Tygacil should be reserved for use in situations when alternative treatments are not suitable .
A trial of patients with hospital acquired, including ventilator-associated, pneumonia failed to demonstrate the efficacy of Tygacil. In this trial, patients were randomized to receive Tygacil or a comparator. In addition, patients were allowed to receive specified adjunctive therapies. The sub-group of patients with ventilator-associated pneumonia who received Tygacil had lower cure rates (47.9% versus 70.1% for the clinically evaluable population).
In this trial, greater mortality was seen in patients with ventilator-associated pneumonia who received Tygacil (25/131 [19.1%] versus 15/122 [12.3%] in comparator-treated patients) . Particularly high mortality was seen among TYGACIL-treated patients with ventilator-associated pneumonia and bacteremia at baseline (9/18 [50.0%] versus 1/13 [7.7%] in comparator-treated patients).
Anaphylactic reactions have been reported with nearly all antibacterial agents, including Tygacil, and may be life-threatening. Tygacil is structurally similar to tetracycline-class antibiotics and should be avoided in patients with known hypersensitivity to tetracycline-class antibiotics.
Increases in total bilirubin concentration, prothrombin time and transaminases have been seen in patients treated with Tygacil. Isolated cases of significant hepatic dysfunction and hepatic failure have been reported in patients being treated with Tygacil. Some of these patients were receiving multiple concomitant medications. Patients who develop abnormal liver function tests during Tygacil therapy should be monitored for evidence of worsening hepatic function and evaluated for risk/benefit of continuing Tygacil therapy. Hepatic dysfunction may occur after the drug has been discontinued.
Acute pancreatitis, including fatal cases, has occurred in association with Tygacil treatment. The diagnosis of acute pancreatitis should be considered in patients taking Tygacil who develop clinical symptoms, signs, or laboratory abnormalities suggestive of acute pancreatitis. Cases have been reported in patients without known risk factors for pancreatitis. Patients usually improve after Tygacil discontinuation. Consideration should be given to the cessation of the treatment with Tygacil in cases suspected of having developed pancreatitis .
Tygacil may cause fetal harm when administered to a pregnant woman. If the patient becomes pregnant while taking Tygacil, the patient should be apprised of the potential hazard to the fetus. Results of animal studies indicate that Tygacil crosses the placenta and is found in fetal tissues. Decreased fetal weights in rats and rabbits (with associated delays in ossification) and fetal loss in rabbits have been observed with Tygacil .
The use of Tygacil during tooth development may cause permanent discoloration of the teeth (yellow-gray-brown). Results of studies in rats with Tygacil have shown bone discoloration. Tygacil should not be used during tooth development unless other drugs are not likely to be effective or are contraindicated.
Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including Tygacil, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.
C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
If CDAD is suspected or confirmed, ongoing antibiotic use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of C. difficile, and surgical evaluation should be instituted as clinically indicated.
Monotherapy with Tygacil should be avoided in patients with complicated intra-abdominal infections secondary to clinically apparent intestinal perforation. In cIAI studies (n=1642), 6 patients treated with Tygacil and 2 patients treated with imipenem/cilastatin presented with intestinal perforations and developed sepsis/septic shock. The 6 patients treated with Tygacil had higher APACHE II scores (median = 13) versus the 2 patients treated with imipenem/cilastatin (APACHE II scores = 4 and 6). Due to differences in baseline APACHE II scores between treatment groups and small overall numbers, the relationship of this outcome to treatment cannot be established.
Tygacil is structurally similar to tetracycline-class antibacterial drugs and may have similar adverse effects. Such effects may include: photosensitivity, pseudotumor cerebri, and anti-anabolic action (which has led to increased BUN, azotemia, acidosis, and hyperphosphatemia).
Prescribing Tygacil in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.
The following serious adverse reactions are described elsewhere in the labeling:
The most common adverse reactions (incidence >5%) are nausea, vomiting, diarrhea, abdominal pain, headache, and increased SGPT. (6.1)
To report SUSPECTED ADVERSE REACTIONS, contact Pfizer Inc. at 1-800-438-1985 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
In clinical trials, 2514 patients were treated with Tygacil. Tygacil was discontinued due to adverse reactions in 7% of patients compared to 6% for all comparators. Table 1 shows the incidence of adverse reactions through test of cure reported in ≥2% of patients in these trials.
Body System Adverse Reactions | Tygacil (N=2514) | Comparators (N=2307) |
---|---|---|
Body as a Whole | ||
Abdominal pain | 6 | 4 |
Abscess | 2 | 2 |
Asthenia | 3 | 2 |
Headache | 6 | 7 |
Infection | 7 | 5 |
Cardiovascular System | ||
Phlebitis | 3 | 4 |
Digestive System | ||
Diarrhea | 12 | 11 |
Dyspepsia | 2 | 2 |
Nausea | 26 | 13 |
Vomiting | 18 | 9 |
Hemic and Lymphatic System | ||
Anemia | 5 | 6 |
Metabolic and Nutritional | ||
Alkaline Phosphatase Increased | 3 | 3 |
Amylase Increased | 3 | 2 |
Bilirubinemia | 2 | 1 |
BUN Increased | 3 | 1 |
Healing Abnormal | 3 | 2 |
Hyponatremia | 2 | 1 |
Hypoproteinemia | 5 | 3 |
SGOT Increased | 4 | 5 |
SGPT Increased | 5 | 5 |
Respiratory System | ||
Pneumonia | 2 | 2 |
Nervous System | ||
Dizziness | 3 | 3 |
Skin and Appendages | ||
Rash | 3 | 4 |
In all 13 Phase 3 and 4 trials that included a comparator, death occurred in 4.0% (150/3788) of patients receiving Tygacil and 3.0% (110/3646) of patients receiving comparator drugs. In a pooled analysis of these trials, based on a random effects model by trial weight, an adjusted risk difference of all-cause mortality was 0.6% (95% CI 0.1, 1.2) between Tygacil and comparator-treated patients. The cause of the imbalance has not been established. Generally, deaths were the result of worsening infection, complications of infection or underlying co-morbidities.
Tygacil | Comparator | Risk Difference | |||
---|---|---|---|---|---|
Infection Type | n/N | % | n/N | % | % (95% CI) |
CAP = Community-acquired pneumonia; cIAI = Complicated intra-abdominal infections; cSSSI = Complicated skin and skin structure infections; HAP = Hospital-acquired pneumonia; VAP = Ventilator-associated pneumonia; RP = Resistant pathogens; DFI = Diabetic foot infections. | |||||
Note: The studies include 300, 305, 900 (cSSSI), 301, 306, 315, 316, 400 (cIAI), 308 and 313 (CAP), 311 (HAP), 307 [Resistant gram-positive pathogen study in patients with MRSA or Vancomycin-Resistant Enterococcus (VRE)], and 319 (DFI with and without osteomyelitis). | |||||
cSSSI | 12/834 | 1.4 | 6/813 | 0.7 | 0.7 (-0.3, 1.7) |
cIAI | 42/1382 | 3.0 | 31/1393 | 2.2 | 0.8 (-0.4, 2.0) |
CAP | 12/424 | 2.8 | 11/422 | 2.6 | 0.2 (-2.0, 2.4) |
HAP | 66/467 | 14.1 | 57/467 | 12.2 | 1.9 (-2.4, 6.3) |
Non-VAP | 41/336 | 12.2 | 42/345 | 12.2 | 0.0 (-4.9, 4.9) |
VAP | 25/131 | 19.1 | 15/122 | 12.3 | 6.8 (-2.1, 15.7) |
RP | 11/128 | 8.6 | 2/43 | 4.7 | 3.9 (-4.0, 11.9) |
DFI | 7/553 | 1.3 | 3/508 | 0.6 | 0.7 (-0.5, 1.8) |
Overall Adjusted | 150/3788 | 4.0 | 110/3646 | 3.0 | 0.6 (0.1, 1.2) |
An analysis of mortality in all trials conducted for approved indications - cSSSI, cIAI, and CABP, including post-market trials (one in cSSSI and two in cIAI) - showed an adjusted mortality rate of 2.5% (66/2640) for Tygacil and 1.8% (48/2628) for comparator, respectively. The adjusted risk difference for mortality stratified by trial weight was 0.6% (95% CI 0.0, 1.2).
In comparative clinical studies, infection-related serious adverse reactions were more frequently reported for subjects treated with Tygacil (7%) versus comparators (6%). Serious adverse reactions of sepsis/septic shock were more frequently reported for subjects treated with Tygacil (2%) versus comparators (1%). Due to baseline differences between treatment groups in this subset of patients, the relationship of this outcome to treatment cannot be established .
The most common adverse reactions were nausea and vomiting which generally occurred during the first 1 – 2 days of therapy. The majority of cases of nausea and vomiting associated with Tygacil and comparators were either mild or moderate in severity. In patients treated with Tygacil, nausea incidence was 26% (17% mild, 8% moderate, 1% severe) and vomiting incidence was 18% (11% mild, 6% moderate, 1% severe).
In patients treated for complicated skin and skin structure infections (cSSSI), nausea incidence was 35% for Tygacil and 9% for vancomycin/aztreonam; vomiting incidence was 20% for Tygacil and 4% for vancomycin/aztreonam. In patients treated for complicated intra-abdominal infections (cIAI), nausea incidence was 25% for Tygacil and 21% for imipenem/cilastatin; vomiting incidence was 20% for Tygacil and 15% for imipenem/cilastatin. In patients treated for community-acquired bacterial pneumonia (CABP), nausea incidence was 24% for Tygacil and 8% for levofloxacin; vomiting incidence was 16% for Tygacil and 6% for levofloxacin.
Discontinuation from Tygacil was most frequently associated with nausea (1%) and vomiting (1%). For comparators, discontinuation was most frequently associated with nausea (<1%).
The following adverse reactions were reported (<2%) in patients receiving Tygacil in clinical studies:
Body as a Whole: injection site inflammation, injection site pain, injection site reaction, septic shock, allergic reaction, chills, injection site edema, injection site phlebitis
Cardiovascular System: thrombophlebitis
Digestive System: anorexia, jaundice, abnormal stools
Metabolic/Nutritional System: increased creatinine, hypocalcemia, hypoglycemia
Special Senses: taste perversion
Hemic and Lymphatic System: prolonged activated partial thromboplastin time (aPTT), prolonged prothrombin time (PT), eosinophilia, increased international normalized ratio (INR), thrombocytopenia
Skin and Appendages: pruritus
Urogenital System: vaginal moniliasis, vaginitis, leukorrhea
The following adverse reactions have been identified during post-approval use of Tygacil. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish causal relationship to drug exposure.
Prothrombin time or other suitable anticoagulation test should be monitored if Tygacil is administered with warfarin .
Concurrent use of antibacterial drugs with oral contraceptives may render oral contraceptives less effective.
Teratogenic Effects-Pregnancy Category D
Tygacil was not teratogenic in the rat or rabbit. In preclinical safety studies, 14C-labeled Tygacil crossed the placenta and was found in fetal tissues, including fetal bony structures. The administration of Tygacil was associated with reductions in fetal weights and an increased incidence of skeletal anomalies (delays in bone ossification) at exposures of 5 times and 1 times the human daily dose based on AUC in rats and rabbits, respectively (28 mcg∙hr/mL and 6 mcg∙hr/mL at 12 and 4 mg/kg/day). An increased incidence of fetal loss was observed at maternotoxic doses in the rabbits with exposure equivalent to human dose.
There are no adequate and well-controlled studies of Tygacil in pregnant women. Tygacil should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.
Results from animal studies using 14C-labeled Tygacil indicate that Tygacil is excreted readily via the milk of lactating rats. Consistent with the limited oral bioavailability of Tygacil, there is little or no systemic exposure to Tygacil in nursing pups as a result of exposure via maternal milk.
It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when Tygacil is administered to a nursing woman .
Use in patients under 18 years of age is not recommended. Safety and effectiveness in pediatric patients below the age of 18 years have not been established. Because of the increased mortality observed in TYGACIL-treated adult patients in clinical trials, pediatric trials of Tygacil to evaluate the safety and efficacy of Tygacil were not conducted.
In situations where there are no other alternative antibacterial drugs, dosing has been proposed for pediatric patients 8 to 17 years of age based on data from pediatric pharmacokinetic studies .
Because of effects on tooth development, use in patients under 8 years of age is not recommended .
Of the total number of subjects who received Tygacil in Phase 3 clinical studies, 664 were 65 and over, while 288 were 75 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, but greater sensitivity to adverse events of some older individuals cannot be ruled out.
No significant difference in Tygacil exposure was observed between healthy elderly subjects and younger subjects following a single 100 mg dose of Tygacil.
No dosage adjustment is warranted in patients with mild to moderate hepatic impairment (Child Pugh A and Child Pugh B). In patients with severe hepatic impairment (Child Pugh C), the initial dose of Tygacil should be 100 mg followed by a reduced maintenance dose of 25 mg every 12 hours. Patients with severe hepatic impairment (Child Pugh C) should be treated with caution and monitored for treatment response .
No specific information is available on the treatment of overdosage with Tygacil. Intravenous administration of Tygacil at a single dose of 300 mg over 60 minutes in healthy volunteers resulted in an increased incidence of nausea and vomiting. Tygacil is not removed in significant quantities by hemodialysis.
Tygacil (tigecycline) is a tetracycline class antibacterial for intravenous infusion. The chemical name of Tygacil is (4S,4aS,5aR,12aS)-9-[2-(tert-butylamino)acetamido]-4,7-bis(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,10,12,12a-tetrahydroxy-1,11-dioxo-2-naphthacenecarboxamide. The empirical formula is C29H39N5O8 and the molecular weight is 585.65.
The following represents the chemical structure of Tygacil:
Figure 1: Structure of Tygacil |
Tygacil is an orange lyophilized powder or cake. Each Tygacil single-dose 5 mL or 10 mL vial contains 50 mg Tygacil lyophilized powder for reconstitution for intravenous infusion and 100 mg of lactose monohydrate. The pH is adjusted with hydrochloric acid, and if necessary sodium hydroxide. The product does not contain preservatives.
Tygacil is a tetracycline class antibacterial.
Cardiac Electrophysiology
No significant effect of a single intravenous dose of Tygacil 50 mg or 200 mg on QTc interval was detected in a randomized, placebo- and active-controlled four-arm crossover thorough QTc study of 46 healthy subjects.
The mean pharmacokinetic parameters of Tygacil after single and multiple intravenous doses based on pooled data from clinical pharmacology studies are summarized in Table 3. Intravenous infusions of Tygacil were administered over approximately 30 to 60 minutes.
Single Dose 100 mg | Multiple Dose 50 mg every 12h (N=103) | |
---|---|---|
Cmax (mcg/mL) | 1.45 (22%) | 0.87 (27%) |
Cmax (mcg/mL) | 0.90 (30%) | 0.63 (15%) |
AUC (mcg∙h/mL) | 5.19 (36%) | - - |
AUC0–24h (mcg∙h/mL) | - - | 4.70 (36%) |
Cmin (mcg/mL) | - - | 0.13 (59%) |
t½ (h) | 27.1 (53%) | 42.4 (83%) |
CL (L/h) | 21.8 (40%) | 23.8 (33%) |
CLr (mL/min) | 38.0 (82%) | 51.0 (58%) |
Vss (L) | 568 (43%) | 639 (48%) |
Distribution
The in vitro plasma protein binding of Tygacil ranges from approximately 71% to 89% at concentrations observed in clinical studies (0.1 to 1.0 mcg/mL). The steady-state volume of distribution of Tygacil averaged 500 to 700 L (7 to 9 L/kg), indicating Tygacil is extensively distributed beyond the plasma volume and into the tissues.
Following the administration of Tygacil 100 mg followed by 50 mg every 12 hours to 33 healthy volunteers, the Tygacil AUC0–12h (134 mcg∙h/mL) in alveolar cells was approximately 78-fold higher than the AUC0–12h in the serum, and the AUC0–12h (2.28 mcg∙h/mL) in epithelial lining fluid was approximately 32% higher than the AUC0–12h in serum. The AUC0–12h (1.61 mcg∙h/mL) of Tygacil in skin blister fluid was approximately 26% lower than the AUC0–12h in the serum of 10 healthy subjects.
In a single-dose study, Tygacil 100 mg was administered to subjects prior to undergoing elective surgery or medical procedure for tissue extraction. Concentrations at 4 hours after Tygacil administration were higher in gallbladder (38-fold, n=6), lung (3.7-fold, n=5), and colon (2.3-fold, n=6), and lower in synovial fluid (0.58-fold, n=5), and bone (0.35-fold, n=6) relative to serum. The concentration of Tygacil in these tissues after multiple doses has not been studied.
Elimination
Metabolism
Tygacil is not extensively metabolized. In vitro studies with Tygacil using human liver microsomes, liver slices, and hepatocytes led to the formation of only trace amounts of metabolites. In healthy male volunteers receiving 14C-tigecycline, Tygacil was the primary 14C-labeled material recovered in urine and feces, but a glucuronide, an N-acetyl metabolite, and a Tygacil epimer (each at no more than 10% of the administered dose) were also present.
Tygacil is a substrate of P-glycoprotein (P-gp) based on an in vitro study using a cell line overexpressing P-gp. The potential contribution of P-gp-mediated transport to the in vivo disposition of Tygacil is not known.
Excretion
The recovery of total radioactivity in feces and urine following administration of 14C-tigecycline indicates that 59% of the dose is eliminated by biliary/fecal excretion, and 33% is excreted in urine. Approximately 22% of the total dose is excreted as unchanged Tygacil in urine. Overall, the primary route of elimination for Tygacil is biliary excretion of unchanged Tygacil and its metabolites. Glucuronidation and renal excretion of unchanged Tygacil are secondary routes.
Specific Populations
Hepatic Impairment
In a study comparing 10 patients with mild hepatic impairment (Child Pugh A), 10 patients with moderate hepatic impairment (Child Pugh B), and 5 patients with severe hepatic impairment (Child Pugh C) to 23 age and weight matched healthy control subjects, the single-dose pharmacokinetic disposition of Tygacil was not altered in patients with mild hepatic impairment. However, systemic clearance of Tygacil was reduced by 25% and the half-life of Tygacil was prolonged by 23% in patients with moderate hepatic impairment (Child Pugh B). Systemic clearance of Tygacil was reduced by 55%, and the half-life of Tygacil was prolonged by 43% in patients with severe hepatic impairment (Child Pugh C). Dosage adjustment is necessary in patients with severe hepatic impairment (Child Pugh C) .
Renal Impairment
A single dose study compared 6 subjects with severe renal impairment (creatinine clearance <30 mL/min), 4 end stage renal disease (ESRD) patients receiving Tygacil 2 hours before hemodialysis, 4 ESRD patients receiving Tygacil 1 hour after hemodialysis, and 6 healthy control subjects. The pharmacokinetic profile of Tygacil was not significantly altered in any of the renally impaired patient groups, nor was Tygacil removed by hemodialysis. No dosage adjustment of Tygacil is necessary in patients with renal impairment or in patients undergoing hemodialysis.
Geriatric Patients
No significant differences in pharmacokinetics were observed between healthy elderly subjects (n=15, age 65–75; n=13, age >75) and younger subjects (n=18) receiving a single 100-mg dose of Tygacil. Therefore, no dosage adjustment is necessary based on age .
Pediatric Patients
A single-dose safety, tolerability, and pharmacokinetic study of Tygacil in pediatric patients aged 8–16 years who recently recovered from infections was conducted. The doses administered were 0.5, 1, or 2 mg/kg. The study showed that for children aged 12–16 years (n = 16) a dosage of 50 mg twice daily would likely result in exposures comparable to those observed in adults with the approved dosing regimen. Large variability observed in children aged 8 to 11 years of age (n = 8) required additional study to determine the appropriate dosage.
A subsequent Tygacil dose-finding study was conducted in 8–11 year old patients with cIAI, cSSSI, or CABP. The doses of Tygacil studied were 0.75 mg/kg (n = 17), 1 mg/kg (n = 21), and 1.25 mg/kg (n=20). This study showed that for children aged 8–11 years, a 1.2 mg/kg dose would likely result in exposures comparable to those observed in adults resulting with the approved dosing regimen .
Gender
In a pooled analysis of 38 women and 298 men participating in clinical pharmacology studies, there was no significant difference in the mean (±SD) Tygacil clearance between women (20.7±6.5 L/h) and men (22.8±8.7 L/h). Therefore, no dosage adjustment is necessary based on gender.
Race
In a pooled analysis of 73 Asian subjects, 53 Black subjects, 15 Hispanic subjects, 190 White subjects, and 3 subjects classified as "other" participating in clinical pharmacology studies, there was no significant difference in the mean (±SD) Tygacil clearance among the Asian subjects (28.8±8.8 L/h), Black subjects (23.0±7.8 L/h), Hispanic subjects (24.3±6.5 L/h), White subjects (22.1±8.9 L/h), and "other" subjects (25.0±4.8 L/h). Therefore, no dosage adjustment is necessary based on race.
Drug Interaction Studies
Digoxin
Tygacil (100 mg followed by 50 mg every 12 hours) and digoxin (0.5 mg followed by 0.25 mg, orally, every 24 hours) were co-administered to healthy subjects in a drug interaction study. Tygacil slightly decreased the Cmax of digoxin by 13%, but did not affect the AUC or clearance of digoxin. This small change in Cmax did not affect the steady-state pharmacodynamic effects of digoxin as measured by changes in ECG intervals. In addition, digoxin did not affect the pharmacokinetic profile of Tygacil. Therefore, no dosage adjustment of either drug is necessary when Tygacil is administered with digoxin.
Warfarin
Concomitant administration of Tygacil (100 mg followed by 50 mg every 12 hours) and warfarin (25 mg single-dose) to healthy subjects resulted in a decrease in clearance of R-warfarin and S-warfarin by 40% and 23%, an increase in Cmax by 38% and 43% and an increase in AUC by 68% and 29%, respectively. Tygacil did not significantly alter the effects of warfarin on INR. In addition, warfarin did not affect the pharmacokinetic profile of Tygacil. However, prothrombin time or other suitable anticoagulation test should be monitored if Tygacil is administered with warfarin.
In vitro studies in human liver microsomes indicate that Tygacil does not inhibit metabolism mediated by any of the following 6 cytochrome P450 (CYP) isoforms: 1A2, 2C8, 2C9, 2C19, 2D6, and 3A4. Therefore, Tygacil is not expected to alter the metabolism of drugs metabolized by these enzymes. In addition, because Tygacil is not extensively metabolized, clearance of Tygacil is not expected to be affected by drugs that inhibit or induce the activity of these CYP450 isoforms.
In vitro studies using Caco-2 cells indicate that Tygacil does not inhibit digoxin flux, suggesting that Tygacil is not a P-glycoprotein (P-gp) inhibitor. This in vitro information is consistent with the lack of effect of Tygacil on digoxin clearance noted in the in vivo drug interaction study described above.
Tygacil is a substrate of P-gp based on an in vitro study using a cell line overexpressing P-gp. The potential contribution of P-gp-mediated transport to the in vivo disposition of Tygacil is not known. Coadministration of P-gp inhibitors (e.g., ketoconazole or cyclosporine) or P-gp inducers (e.g., rifampicin) could affect the pharmacokinetics of Tygacil.
Mechanism of Action
Tygacil inhibits protein translation in bacteria by binding to the 30S ribosomal subunit and blocking entry of amino-acyl tRNA molecules into the A site of the ribosome. This prevents incorporation of amino acid residues into elongating peptide chains. In general, Tygacil is considered bacteriostatic; however, Tygacil has demonstrated bactericidal activity against isolates of S. pneumoniae and L. pneumophila.
Resistance
To date there has been no cross-resistance observed between Tygacil and other antibacterials. Tygacil is less affected by the two major tetracycline-resistance mechanisms, ribosomal protection and efflux. Additionally, Tygacil is not affected by resistance mechanisms such as beta-lactamases (including extended spectrum beta-lactamases), target-site modifications, macrolide efflux pumps or enzyme target changes (e.g. gyrase/topoisomerases). However, some ESBL-producing isolates may confer resistance to Tygacil via other resistance mechanisms. Tygacil resistance in some bacteria (e.g. Acinetobacter calcoaceticus-Acinetobacter baumannii complex) is associated with multi-drug resistant (MDR) efflux pumps.
Interaction with Other Antimicrobials
In vitro studies have not demonstrated antagonism between Tygacil and other commonly used antibacterials.
Antimicrobial Activity
Tygacil has been shown to be active against most of the following bacteria, both in vitro and in clinical infections .
Gram-positive Bacteria
Enterococcus faecalis (vancomycin-susceptible isolates)
Staphylococcus aureus (methicillin-susceptible and -resistant isolates)
Streptococcus agalactiae
Streptococcus anginosus group (includes S. anginosus, S. intermedius, and S. constellatus)
Streptococcus pneumoniae (penicillin-susceptible isolates)
Streptococcus pyogenes
Gram-negative Bacteria
Citrobacter freundii
Enterobacter cloacae
Escherichia coli
Haemophilus influenzae
Klebsiella oxytoca
Klebsiella pneumoniae
Legionella pneumophila
Anaerobic Bacteria
Bacteroides fragilis
Bacteroides thetaiotaomicron
Bacteroides uniformis
Bacteroides vulgatus
Clostridium perfringens
Peptostreptococcus micros
The following in vitro data are available, but their clinical significance is unknown. At least 90 percent of the following bacteria exhibit an in vitro minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoint for Tygacil against isolates of similar genus or organism group. However, the efficacy of Tygacil in treating clinical infections due to these bacteria has not been established in adequate and well-controlled clinical trials.
Gram-positive Bacteria
Enterococcus avium
Enterococcus casseliflavus
Enterococcus faecalis (vancomycin-resistant isolates)
Enterococcus faecium (vancomycin-susceptible and -resistant isolates)
Enterococcus gallinarum
Listeria monocytogenes
Staphylococcus epidermidis (methicillin-susceptible and -resistant isolates)
Staphylococcus haemolyticus
Gram-negative Bacteria
Acinetobacter baumannii
Aeromonas hydrophila
Citrobacter koseri
Enterobacter aerogenes
Haemophilus influenzae (ampicillin-resistant)
Haemophilus parainfluenzae
Pasteurella multocida
Serratia marcescens
Stenotrophomonas maltophilia
Anaerobic Bacteria
Bacteroides distasonis
Bacteroides ovatus
Peptostreptococcus spp.
Porphyromonas spp.
Prevotella spp.
Other Bacteria
Mycobacterium abscessus
Mycobacterium fortuitum
Susceptibility Test Methods
When available, the clinical microbiology laboratory should provide cumulative results of the in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug for treatment.
Dilution Techniques
Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized test method (broth, and/or agar, or microdilution).1,3,4 For broth dilution tests for aerobic organisms, MICs must be determined in testing medium that is fresh (<12h old). The MIC values should be interpreted according to the criteria provided in Table 4.
Diffusion Techniques
Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized test method.2,4 This procedure uses paper disks impregnated with 15 mcg Tygacil to test the susceptibility of bacteria to Tygacil. The disc diffusion breakpoints are noted in Table 4.
Anaerobic Techniques
Anaerobic susceptibility testing with Tygacil should be done by the agar dilution method3,4 since quality control parameters for broth-dilution are not established.
Minimum Inhibitory Concentrations (mcg/mL) | Disk Diffusion (zone diameters in mm) | |||||
---|---|---|---|---|---|---|
Pathogen | S | I | R | S | I | R |
Staphylococcus aureus (including methicillin-resistant isolates) | ≤0.5 | - | - | ≥19 | - | - |
Streptococcus spp. other than S. pneumoniae | ≤0.25 | - | - | ≥19 | - | - |
Streptococcus pneumoniae | ≤0.06 | - | - | ≥19 | - | - |
Enterococcus faecalis (vancomycin-susceptible isolates) | ≤0.25 | - | - | ≥19 | - | - |
Enterobacteriaceae | ≤2 | 4 | ≥8 | ≥19 | 15–18 | ≤14 |
Haemophilus influenzae | ≤0.25 | - | - | ≥19 | - | - |
Anaerobes | ≤4 | 8 | ≥16 | n/a | n/a | n/a |
A report of "Susceptible" (S) indicates that the antimicrobial drug is likely to inhibit growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable at the site of infection. A report of "Intermediate" (I) indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category also provides a buffer zone that prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" (R) indicates that the antimicrobial drug is not likely to inhibit the growth of the pathogen if the antimicrobial drug reaches the concentration usually achievable; other therapy should be selected.
Quality Control
Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individuals performing the test. 1,2,3,4 Standard Tygacil powder should provide the following range of MIC values noted in Table 5. For the diffusion technique using the 15 mcg Tygacil disk, the criteria provided in Table 5 should be achieved.
QC Strain | Minimum Inhibitory Concentrations (mcg/mL) | Disk Diffusion (zone diameters in mm) |
---|---|---|
ATCC = American Type Culture Collection | ||
Staphylococcus aureus ATCC 25923 | Not Applicable | 20–25 |
Staphylococcus aureus ATCC 29213 | 0.03–0.25 | Not Applicable |
Escherichia coli ATCC 25922 | 0.03–0.25 | 20–27 |
Enterococcus faecalis ATCC 29212 | 0.03–0.12 | Not Applicable |
Streptococcus pneumoniae ATCC 49619 | 0.015–0.12 | 23–29 |
Haemophilus influenzae ATCC 49247 | 0.06–0.5 | 23–31 |
Neisseria gonorrhoeae ATCC 49226 | Not Applicable | 30 to 40 |
Bacteroides fragilis ATCC 25285 | 0.12–1 | Not Applicable |
Bacteroides thetaiotaomicron ATCC 29741 | 0.5–2 | Not Applicable |
Eggerthella lenta ATCC 43055 | 0.06–0.5 | Not Applicable |
Clostridium difficile ATCC 70057 | 0.125–1 | Not Applicable |
Pseudomonas aeruginosa ATCC 27853 | Not Applicable | 9 to 13 |
Lifetime studies in animals have not been performed to evaluate the carcinogenic potential of Tygacil. No mutagenic or clastogenic potential was found in a battery of tests, including in vitro chromosome aberration assay in Chinese hamster ovary cells, in vitro forward mutation assay in CHO cells (HGRPT locus), in vitro forward mutation assays in mouse lymphoma cells, and in vivo mouse micronucleus assay. Tygacil did not affect mating or fertility in rats at exposures up to 5 times the human daily dose based on AUC (28 mcg∙hr/mL at 12 mg/kg/day). In female rats, there were no compound-related effects on ovaries or estrous cycles at exposures up to 5 times the human daily dose based on AUC.
In two week studies, decreased erythrocytes, reticulocytes, leukocytes, and platelets, in association with bone marrow hypocellularity, have been seen with Tygacil at exposures of 8 times and 10 times the human daily dose based on AUC in rats and dogs, (AUC of approximately 50 and 60 mcg∙hr/mL at doses of 30 and 12 mg/kg/day) respectively. These alterations were shown to be reversible after two weeks of dosing.
Tygacil was evaluated in adults for the treatment of complicated skin and skin structure infections in two randomized, double-blind, active-controlled, multinational, multicenter studies (Studies 1 and 2). These studies compared Tygacil (100 mg intravenous initial dose followed by 50 mg every 12 hours) with vancomycin (1 g intravenous every 12 hours)/aztreonam (2 g intravenous every 12 hours) for 5 to 14 days. Patients with complicated deep soft tissue infections including wound infections and cellulitis (≥10 cm, requiring surgery/drainage or with complicated underlying disease), major abscesses, infected ulcers, and burns were enrolled in the studies. The primary efficacy endpoint was the clinical response at the test of cure (TOC) visit in the co-primary populations of the clinically evaluable (CE) and clinical modified intent-to-treat (c-mITT) patients. See Table 6. Clinical cure rates at TOC by pathogen in the microbiologically evaluable patients are presented in Table 7.
Tygacil n/N (%) | Vancomycin/Aztreonam n/N (%) | |
---|---|---|
Study 1 | ||
CE | 165/199 (82.9) | 163/198 (82.3) |
c-mITT | 209/277 (75.5) | 200/260 (76.9) |
Study 2 | ||
CE | 200/223 (89.7) | 201/213 (94.4) |
c-mITT | 220/261 (84.3) | 225/259 (86.9) |
Pathogen | Tygacil n/N (%) | Vancomycin/Aztreonam n/N (%) |
---|---|---|
Escherichia coli | 29/36 (80.6) | 26/30 (86.7) |
Enterobacter cloacae | 10/12 (83.3) | 15/15 (100) |
Enterococcus faecalis (vancomycin-susceptible only) | 15/21 (71.4) | 19/24 (79.2) |
Klebsiella pneumoniae | 12/14 (85.7) | 15/16 (93.8) |
Methicillin-susceptible Staphylococcus aureus (MSSA) | 124/137 (90.5) | 113/120 (94.2) |
Methicillin-resistant Staphylococcus aureus (MRSA) | 79/95 (83.2) | 46/57 (80.7) |
Streptococcus agalactiae | 8/8 (100) | 11/14 (78.6) |
Streptococcus anginosus grp. | 17/21 (81.0) | 9/10 (90.0) |
Streptococcus pyogenes | 31/32 (96.9) | 24/27 (88.9) |
Bacteroides fragilis | 7/9 (77.8) | 4/5 (80.0) |
Tygacil was evaluated in adults for the treatment of complicated intra-abdominal infections (cIAI) in two randomized, double-blind, active-controlled, multinational, multicenter studies (Studies 1 and 2). These studies compared Tygacil (100 mg intravenous initial dose followed by 50 mg every 12 hours) with imipenem/cilastatin (500 mg intravenous every 6 hours) for 5 to 14 days. Patients with complicated diagnoses including appendicitis, cholecystitis, diverticulitis, gastric/duodenal perforation, intra-abdominal abscess, perforation of intestine, and peritonitis were enrolled in the studies. The primary efficacy endpoint was the clinical response at the TOC visit for the co-primary populations of the microbiologically evaluable (ME) and the microbiologic modified intent-to-treat (m-mITT) patients. See Table 8. Clinical cure rates at TOC by pathogen in the microbiologically evaluable patients are presented in Table 9.
Tygacil n/N (%) | Imipenem/Cilastatin n/N (%) | |
---|---|---|
Study 1 | ||
ME | 199/247 (80.6) | 210/255 (82.4) |
m-mITT | 227/309 (73.5) | 244/312 (78.2) |
Study 2 | ||
ME | 242/265 (91.3) | 232/258 (89.9) |
m-mITT | 279/322 (86.6) | 270/319 (84.6) |
Pathogen | Tygacil n/N (%) | Imipenem/Cilastatin n/N (%) |
---|---|---|
Citrobacter freundii | 12/16 (75.0) | 3/4 (75.0) |
Enterobacter cloacae | 15/17 (88.2) | 16/17 (94.1) |
Escherichia coli | 284/336 (84.5) | 297/342 (86.8) |
Klebsiella oxytoca | 19/20 (95.0) | 17/19 (89.5) |
Klebsiella pneumoniae | 42/47 (89.4) | 46/53 (86.8) |
Enterococcus faecalis | 29/38 (76.3) | 35/47 (74.5) |
Methicillin-susceptible Staphylococcus aureus (MSSA) | 26/28 (92.9) | 22/24 (91.7) |
Methicillin-resistant Staphylococcus aureus (MRSA) | 16/18 (88.9) | 1/3 (33.3) |
Streptococcus anginosus grp. | 101/119 (84.9) | 60/79 (75.9) |
Bacteroides fragilis | 68/88 (77.3) | 59/73 (80.8) |
Bacteroides thetaiotaomicron | 36/41 (87.8) | 31/36 (86.1) |
Bacteroides uniformis | 12/17 (70.6) | 14/16 (87.5) |
Bacteroides vulgatus | 14/16 (87.5) | 4/6 (66.7) |
Clostridium perfringens | 18/19 (94.7) | 20/22 (90.9) |
Peptostreptococcus micros | 13/17 (76.5) | 8/11 (72.7) |
Tygacil was evaluated in adults for the treatment of community-acquired bacterial pneumonia (CABP) in two randomized, double-blind, active-controlled, multinational, multicenter studies (Studies 1 and 2). These studies compared Tygacil (100 mg intravenous initial dose followed by 50 mg every 12 hours) with levofloxacin (500 mg intravenous every 12 or 24 hours). In Study 1, after at least 3 days of intravenous therapy, a switch to oral levofloxacin (500 mg daily) was permitted for both treatment arms. Total therapy was 7 to 14 days. Patients with community-acquired bacterial pneumonia who required hospitalization and intravenous therapy were enrolled in the studies. The primary efficacy endpoint was the clinical response at the test of cure (TOC) visit in the co-primary populations of the clinically evaluable (CE) and clinical modified intent-to-treat (c-mITT) patients. See Table 10. Clinical cure rates at TOC by pathogen in the microbiologically evaluable patients are presented in Table 11.
Tygacil n/N (%) | Levofloxacin n/N (%) | 95% CI | |
---|---|---|---|
Study 1 | |||
CE | 125/138 (90.6) | 136/156 (87.2) | (-4.4, 11.2) |
c-mITT | 149/191 (78) | 158/203 (77.8) | (-8.5, 8.9) |
Study 2 | |||
CE | 128/144 (88.9) | 116/136 (85.3) | (-5.0, 12.2) |
c-mITT | 170/203 (83.7) | 163/200 (81.5) | (-5.6, 10.1) |
Pathogen | Tygacil n/N (%) | Levofloxacin n/N (%) |
---|---|---|
Haemophilus influenzae | 14/17 (82.4) | 13/16 (81.3) |
Legionella pneumophila | 10/10 (100.0) | 6/6 (100.0) |
Streptococcus pneumoniae (penicillin-susceptible only) | 44/46 (95.7) | 39/44 (88.6) |
To further evaluate the treatment effect of Tygacil, a post-hoc analysis was conducted in CABP patients with a higher risk of mortality, for whom the treatment effect of antibiotics is supported by historical evidence. The higher-risk group included CABP patients from the two studies with any of the following factors:
The results of this analysis are shown in Table 12. Age ≥50 was the most common risk factor in the higher-risk group.
Tygacil n/N (%) | Levofloxacin n/N (%) | 95% CI | |
---|---|---|---|
Study 1 | |||
CE | |||
Higher risk | |||
Yes | 93/103 (90.3) | 84/102 (82.4) | (-2.3, 18.2) |
No | 32/35 (91.4) | 52/54 (96.3) | (-20.8, 7.1) |
c-mITT | |||
Higher risk | |||
Yes | 111/142 (78.2) | 100/134 (74.6) | (-6.9, 14) |
No | 38/49 (77.6) | 58/69 (84.1) | (-22.8, 8.7) |
Study 2 | |||
CE | |||
Higher risk | |||
Yes | 95/107 (88.8) | 68/85 (80) | (-2.2, 20.3) |
No | 33/37 (89.2) | 48/51 (94.1) | (-21.1, 8.6) |
c-mITT | |||
Higher risk | |||
Yes | 112/134 (83.6) | 93/120 (77.5) | (-4.2, 16.4) |
No | 58/69 (84.1) | 70/80 (87.5) | (-16.2, 8.8) |
Tygacil (tigecycline) for injection is supplied in a single-dose 5 mL glass vial or 10 mL glass vial, each containing 50 mg Tygacil lyophilized powder for reconstitution.
Supplied:
5 mL - 10 vials/box. NDC 0008-4990-02
10 mL - 10 vials/box. NDC 0008-4990-20
Prior to reconstitution, Tygacil should be stored at 20° to 25°C (68° to 77°F); excursions permitted to 15° to 30°C (59° to 86°F). The reconstituted solution of Tygacil may be stored at room temperature (not to exceed 25°C/77°F) for up to 24 hours (up to 6 hours in the vial and the remaining time in the intravenous bag) .
This product's label may have been updated. For current full prescribing information, please visit www.pfizer.com.
Pfizer Injectables
Distributed by
Wyeth Pharmaceuticals Inc
A subsidiary of Pfizer Inc
Philadelphia, PA 19101
LAB-0458-9.0
NDC 0008-4990-19
Single Use Vial
Tygacil®
(tigecycline)
for injection
50 mg
Tygacil per vial
For I.V. Infusion Only
Depending on the reaction of the Tygacil after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Tygacil not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.
Is Tygacil addictive or habit forming?Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.
Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.
Visitors | % | ||
---|---|---|---|
It has side effects | 1 | 100.0% |
There are no reviews yet. Be the first to write one! |
The information was verified by Dr. Rachana Salvi, MD Pharmacology