|
|||
DRUGS & SUPPLEMENTS
|
What is the dose of the medication you are taking? |
Truvada is not approved for the treatment of chronic hepatitis B virus (HBV) infection, and the safety and efficacy of Truvada have not been established in patients coinfected with HBV and HIV-1. Severe acute exacerbations of hepatitis B have been reported in patients who are coinfected with HBV and HIV-1 and have discontinued Truvada. Therefore, hepatic function should be monitored closely with both clinical and laboratory follow-up for at least several months in patients who are infected with HBV and discontinue Truvada. If appropriate, initiation of anti-hepatitis B therapy may be warranted .
Truvada used for a PrEP indication must only be prescribed to individuals confirmed to be HIV-negative immediately prior to initiating and periodically (at least every 3 months) during use. Drug-resistant HIV-1 variants have been identified with use of Truvada for a PrEP indication following undetected acute HIV-1 infection. Do not initiate Truvada for a PrEP indication if signs or symptoms of acute HIV-1 infection are present unless negative infection status is confirmed .
WARNING: POSTTREATMENT ACUTE EXACERBATION OF HEPATITIS B and RISK OF DRUG RESISTANCE WITH USE OF Truvada FOR PRE-EXPOSURE PROPHYLAXIS (PrEP) IN UNDIAGNOSED EARLY HIV-1 INFECTION
See full prescribing information for complete boxed warning.
Truvada is not approved for the treatment of chronic hepatitis B virus (HBV) infection. Severe acute exacerbations of hepatitis B have been reported in patients coinfected with HIV-1 and HBV who have discontinued Truvada. Therefore, hepatic function should be monitored closely in HBV-infected patients who discontinue Truvada. If appropriate, initiation of anti-hepatitis B therapy may be warranted. (5.1)
Truvada used for a PrEP indication must only be prescribed to individuals confirmed to be HIV-negative immediately prior to initial use and periodically during use. Drug-resistant HIV-1 variants have been identified with the use of Truvada for a PrEP indication following undetected acute HIV-1 infection. Do not initiate Truvada for a PrEP indication if signs or symptoms of acute HIV infection are present unless negative infection status is confirmed. (5.8)
|
|
|
|
| |
|
|
|
|
Truvada is a combination of EMTRIVA and VIREAD, both nucleoside analog HIV-1 reverse transcriptase inhibitors.
Truvada®, a combination of EMTRIVA® and VIREAD®, is indicated in combination with other antiretroviral agents for the treatment of HIV-1 infection in adults and pediatric patients weighing at least 17 kg .
The following points should be considered when initiating therapy with Truvada for the treatment of HIV-1 infection:
Truvada is indicated in combination with safer sex practices for pre-exposure prophylaxis (PrEP) to reduce the risk of sexually acquired HIV-1 in adults at high risk. This indication is based on clinical trials in men who have sex with men (MSM) at high risk for HIV-1 infection and in heterosexual serodiscordant couples .
When considering Truvada for pre-exposure prophylaxis the following factors may help to identify individuals at high risk:
When prescribing Truvada for pre-exposure prophylaxis, healthcare providers must:
Treatment of HIV-1 Infection
Pre-exposure Prophylaxis (2.3)
The recommended dose of Truvada in adults and in pediatric patients with body weight greater than or equal to 35 kg is one tablet (containing 200 mg of Truvada and 300 mg of tenofovir disoproxil fumarate) once daily taken orally with or without food.
The recommended oral dose for pediatric patients weighing greater than or equal to 17 kg and who are able to swallow a whole tablet is one Truvada low-strength tablet (167 mg/250 mg, 133 mg/200 mg, or 100 mg/150 mg based on body weight) taken orally once daily with or without food.
The recommended oral dosage of Truvada low-strength tablets is presented in Table 1. Weight should be monitored periodically and the Truvada dose adjusted accordingly.
Body Weight (kg) | Dosing of FTC (mg)/TDF (mg) |
---|---|
17 to less than 22 | one 100/150 tablet once daily |
22 to less than 28 | one 133/200 tablet once daily |
28 to less than 35 | one 167/250 tablet once daily |
The dose of Truvada in HIV-1 uninfected adults is one tablet (containing 200 mg of Truvada and 300 mg of tenofovir disoproxil fumarate) once daily taken orally with or without food.
Treatment of HIV-1 Infection
Significantly increased drug exposures occurred when EMTRIVA or VIREAD were administered to subjects with moderate to severe renal impairment . Therefore, adjust the dosing interval of Truvada in HIV-1 infected adult patients with baseline creatinine clearance 30–49 mL/min using the recommendations in Table 2. These dosing interval recommendations are based on modeling of single-dose pharmacokinetic data in non-HIV infected subjects. The safety and effectiveness of these dosing interval adjustment recommendations have not been clinically evaluated in patients with moderate renal impairment; therefore, clinical response to treatment and renal function should be closely monitored in these patients .
No dose adjustment is necessary for HIV-1 infected patients with mild renal impairment (creatinine clearance 50–80 mL/min). No data are available to make dose recommendations in pediatric patients with renal impairment.
Creatinine Clearance (mL/min) | |||
---|---|---|---|
≥50 | 30–49 | <30 (Including Patients Requiring Hemodialysis) | |
Recommended Dosing Interval | Every 24 hours | Every 48 hours | Truvada should not be administered. |
Routine monitoring of estimated creatinine clearance, serum phosphorus, urine glucose, and urine protein should be performed in all individuals with mild renal impairment .
Pre-exposure Prophylaxis
Do not use Truvada for a PrEP indication in HIV-1 uninfected individuals with estimated creatinine clearance below 60 mL/min .
Routine monitoring of estimated creatinine clearance, serum phosphorus, urine glucose, and urine protein should be performed in all individuals with mild renal impairment. If a decrease in estimated creatinine clearance is observed in uninfected individuals while using Truvada for PrEP, evaluate potential causes and re-assess potential risks and benefits of continued use .
Truvada tablets are available in four dose strengths:
Tablets: 200 mg/300 mg, 167 mg/250 mg, 133 mg/200 mg, and 100 mg/150 mg of Truvada and tenofovir disoproxil fumarate, respectively. (3)
Do not use Truvada for pre-exposure prophylaxis in individuals with unknown or positive HIV-1 status. Truvada should be used in HIV-infected patients only in combination with other antiretroviral agents.
Do not use Truvada for pre-exposure prophylaxis in individuals with unknown or positive HIV-1 status. Truvada should be used in HIV-infected patients only in combination with other antiretroviral agents. (4)
It is recommended that all individuals be tested for the presence of chronic hepatitis B virus (HBV) before initiating Truvada. Truvada is not approved for the treatment of chronic HBV infection, and the safety and efficacy of Truvada have not been established in patients infected with HBV. Severe acute exacerbations of hepatitis B have been reported in patients who are coinfected with HBV and HIV-1 and have discontinued Truvada. In some patients infected with HBV and treated with EMTRIVA, the exacerbations of hepatitis B were associated with liver decompensation and liver failure. Patients who are infected with HBV should be closely monitored with both clinical and laboratory follow-up for at least several months after stopping treatment with Truvada. If appropriate, initiation of anti-hepatitis B therapy may be warranted. HBV-uninfected individuals should be offered vaccination.
Truvada and tenofovir are principally eliminated by the kidney. Renal impairment, including cases of acute renal failure and Fanconi syndrome, has been reported with the use of VIREAD .
It is recommended that estimated creatinine clearance be assessed in all individuals prior to initiating therapy and as clinically appropriate during therapy with Truvada. In patients at risk of renal dysfunction, including patients who have previously experienced renal events while receiving HEPSERA®, it is recommended that estimated creatinine clearance, serum phosphorus, urine glucose, and urine protein be assessed prior to initiation of Truvada, and periodically during Truvada therapy.
Truvada should be avoided with concurrent or recent use of a nephrotoxic agent (e.g., high-dose or multiple non-steroidal anti-inflammatory drugs [NSAIDs]) . Cases of acute renal failure after initiation of high-dose or multiple NSAIDs have been reported in HIV-infected patients with risk factors for renal dysfunction who appeared stable on tenofovir DF. Some patients required hospitalization and renal replacement therapy. Alternatives to NSAIDs should be considered, if needed, in patients at risk for renal dysfunction.
Persistent or worsening bone pain, pain in extremities, fractures, and/or muscular pain or weakness may be manifestations of proximal renal tubulopathy and should prompt an evaluation of renal function in at-risk patients.
Treatment of HIV-1 Infection
Dosing interval adjustment of Truvada and close monitoring of renal function are recommended in all patients with estimated creatinine clearance 30–49 mL/min . No safety or efficacy data are available in patients with renal impairment who received Truvada using these dosing guidelines, so the potential benefit of Truvada therapy should be assessed against the potential risk of renal toxicity. Truvada should not be administered to patients with estimated creatinine clearance below 30 mL/min or patients requiring hemodialysis.
Pre-exposure Prophylaxis
Truvada for a PrEP indication should not be used if estimated creatinine clearance is less than 60 mL/min. If a decrease in estimated creatinine clearance is observed in uninfected individuals while using Truvada for PrEP, evaluate potential causes and re-assess potential risks and benefits of continued use .
Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogs, including tenofovir DF and Truvada, components of Truvada, alone or in combination with other antiretrovirals. Treatment with Truvada should be suspended in any patient or uninfected individual who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).
Truvada is a fixed-dose combination of Truvada and tenofovir DF. Do not coadminister Truvada with other drugs containing Truvada, tenofovir DF, or tenofovir alafenamide, including ATRIPLA, COMPLERA, DESCOVY, EMTRIVA, GENVOYA, ODEFSEY, STRIBILD, VEMLIDY, or VIREAD. Due to similarities between Truvada and lamivudine, do not coadminister Truvada with other drugs containing lamivudine, including Combivir, Dutrebis (lamivudine/raltegravir), Epivir or Epivir-HBV (lamivudine), Epzicom (abacavir sulfate/lamivudine), Triumeq (abacavir sulfate/dolutegravir/lamivudine), or Trizivir (abacavir sulfate/lamivudine/zidovudine).
Do not coadminister Truvada with HEPSERA (adefovir dipivoxil).
Bone Mineral Density
In clinical trials in HIV-1 infected adults and in a clinical trial of HIV-1 uninfected individuals, tenofovir DF was associated with slightly greater decreases in bone mineral density (BMD) and increases in biochemical markers of bone metabolism, suggesting increased bone turnover relative to comparators [see Adverse Reactions (6.2) and VIREAD prescribing information]. Serum parathyroid hormone levels and 1,25 Vitamin D levels were also higher in subjects receiving tenofovir DF.
Clinical trials evaluating tenofovir DF in pediatric and adolescent subjects were conducted. Under normal circumstances, BMD increases rapidly in pediatric patients. In HIV-1 infected subjects aged 2 years to less than 18 years, bone effects were similar to those observed in adult subjects and suggest increased bone turnover. Total body BMD gain was less in the tenofovir DF treated HIV-1 infected pediatric subjects as compared to the control groups. Similar trends were observed in chronic hepatitis B infected adolescent subjects aged 12 years to less than 18 years. In all pediatric trials, skeletal growth (height) appeared to be unaffected. For more information, consult the VIREAD prescribing information.
The effects of tenofovir DF-associated changes in BMD and biochemical markers on long-term bone health and future fracture risk are unknown. Assessment of BMD should be considered for adult and pediatric patients who have a history of pathologic bone fracture or other risk factors for osteoporosis or bone loss. Although the effect of supplementation with calcium and vitamin D was not studied, such supplementation may be beneficial. If bone abnormalities are suspected then appropriate consultation should be obtained.
Mineralization Defects
Cases of osteomalacia associated with proximal renal tubulopathy, manifested as bone pain or pain in extremities and which may contribute to fractures, have been reported in association with the use of tenofovir DF . Arthralgias and muscle pain or weakness have also been reported in cases of proximal renal tubulopathy. Hypophosphatemia and osteomalacia secondary to proximal renal tubulopathy should be considered in patients at risk of renal dysfunction who present with persistent or worsening bone or muscle symptoms while receiving products containing tenofovir DF .
Immune reconstitution syndrome has been reported in HIV-1 infected patients treated with combination antiretroviral therapy, including Truvada. During the initial phase of combination antiretroviral treatment, HIV-1 infected patients whose immune system responds may develop an inflammatory response to indolent or residual opportunistic infections, which may necessitate further evaluation and treatment.
Autoimmune disorders (such as Graves' disease, polymyositis, and Guillain-Barré syndrome) have also been reported to occur in the setting of immune reconstitution; however, the time to onset is more variable and can occur many months after initiation of treatment.
Clinical trials in HIV-1 infected subjects have demonstrated that certain regimens that only contain three nucleoside reverse transcriptase inhibitors (NRTIs) are generally less effective than triple drug regimens containing two NRTIs in combination with either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a HIV-1 protease inhibitor. In particular, early virologic failure and high rates of resistance substitutions have been reported. Triple nucleoside regimens should therefore be used with caution. Patients on a therapy utilizing a triple nucleoside-only regimen should be carefully monitored and considered for treatment modification.
Use Truvada for pre-exposure prophylaxis only as part of a comprehensive prevention strategy that includes other prevention measures, such as safer sex practices, because Truvada is not always effective in preventing the acquisition of HIV-1 .
Use Truvada to reduce the risk of acquiring HIV-1 only in individuals confirmed to be HIV-negative. HIV-1 resistance substitutions may emerge in individuals with undetected HIV-1 infection who are taking only Truvada, because Truvada alone does not constitute a complete treatment regimen for HIV-1 treatment ; therefore, care should be taken to minimize drug exposure in HIV-infected individuals.
Counsel uninfected individuals to strictly adhere to the recommended Truvada dosing schedule. The effectiveness of Truvada in reducing the risk of acquiring HIV-1 is strongly correlated with adherence as demonstrated by measurable drug levels in clinical trials .
The following adverse reactions are discussed in other sections of the labeling:
To report SUSPECTED ADVERSE REACTIONS, contact Gilead Sciences, Inc. at 1-800-445-3235 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
Clinical Trials in Adult Subjects
The most common adverse reactions (incidence greater than or equal to 10%, any severity) occurring in Study 934, an active-controlled clinical trial of efavirenz, Truvada, and tenofovir DF, include diarrhea, nausea, fatigue, headache, dizziness, depression, insomnia, abnormal dreams, and rash. See also Table 3 for the frequency of treatment-emergent adverse reactions (Grades 2–4) occurring in greater than or equal to 5% of subjects treated in any treatment group in this trial.
Skin discoloration, manifested by hyperpigmentation on the palms and/or soles, was generally mild and asymptomatic. The mechanism and clinical significance are unknown.
Study 934 –Treatment Emergent Adverse Reactions: In Study 934, 511 antiretroviral-naïve subjects received either VIREAD + EMTRIVA administered in combination with efavirenz (N=257) or zidovudine/lamivudine administered in combination with efavirenz (N=254) for 144 weeks. Subjects had a mean age of 40 years (range 20 to 73 years) and were predominantly male (88%). Overall, 65% were White, 17% were Black, and 13% were Hispanic. Adverse reactions observed in this trial were generally consistent with those seen in other trials in treatment-experienced or treatment-naïve subjects receiving VIREAD and/or EMTRIVA (Table 3).
FTC+TDF+EFV | AZT/3TC+EFV | |
---|---|---|
N=257 | N=254 | |
Gastrointestinal Disorder | ||
Diarrhea | 9% | 5% |
Nausea | 9% | 7% |
Vomiting | 2% | 5% |
General Disorders and Administration Site Condition | ||
Fatigue | 9% | 8% |
Infections and Infestations | ||
Sinusitis | 8% | 4% |
Upper respiratory tract infections | 8% | 5% |
Nasopharyngitis | 5% | 3% |
Nervous System Disorders | ||
Headache | 6% | 5% |
Dizziness | 8% | 7% |
Psychiatric Disorders | ||
Depression | 9% | 7% |
Insomnia | 5% | 7% |
Skin and Subcutaneous Tissue Disorders | ||
Rash event | 7% | 9% |
In addition to the events described above for Study 934, other adverse reactions that occurred in at least 5% of subjects receiving EMTRIVA or VIREAD with other antiretroviral agents in clinical trials include anxiety, arthralgia, increased cough, dyspepsia, fever, myalgia, pain, abdominal pain, back pain, paresthesia, peripheral neuropathy (including peripheral neuritis and neuropathy), pneumonia, and rhinitis.
Laboratory Abnormalities: Laboratory abnormalities observed in this trial were generally consistent with those seen in other trials of VIREAD and/or EMTRIVA (Table 4).
FTC+TDF+EFV | AZT/3TC+EFV | |
---|---|---|
N=257 | N=254 | |
Any ≥ Grade 3 Laboratory Abnormality | 30% | 26% |
Fasting Cholesterol (>240 mg/dL) | 22% | 24% |
Creatine Kinase (M: >990 U/L) (F: >845 U/L) | 9% | 7% |
Serum Amylase (>175 U/L) | 8% | 4% |
Alkaline Phosphatase (>550 U/L) | 1% | 0% |
AST (M: >180 U/L) (F: >170 U/L) | 3% | 3% |
ALT (M: >215 U/L) (F: >170 U/L) | 2% | 3% |
Hemoglobin (<8.0 mg/dL) | 0% | 4% |
Hyperglycemia (>250 mg/dL) | 2% | 1% |
Hematuria (>75 RBC/HPF) | 3% | 2% |
Glycosuria (≥3+) | <1% | 1% |
Neutrophils (<750/mm3) | 3% | 5% |
Fasting Triglycerides (>750 mg/dL) | 4% | 2% |
In addition to the laboratory abnormalities described above for Study 934, Grades 3−4 laboratory abnormalities of increased bilirubin (>2.5 × ULN), increased pancreatic amylase (>2.0 × ULN), increased or decreased serum glucose (<40 or >250 mg/dL), and increased serum lipase (>2.0 × ULN) occurred in up to 3% of subjects treated with EMTRIVA or VIREAD with other antiretroviral agents in clinical trials.
Clinical Trials in Pediatric Subjects
Truvada: In addition to the adverse reactions reported in adults, anemia and hyperpigmentation were observed in 7% and 32%, respectively, of pediatric subjects (3 months to less than 18 years of age) who received treatment with EMTRIVA in the larger of two open-label, uncontrolled pediatric trials (N=116). For additional information, consult the EMTRIVA prescribing information.
Tenofovir DF: In pediatric clinical trials (Studies 352 and 321) conducted in 184 HIV-1 infected subjects 2 to less than 18 years of age, the adverse reactions observed in pediatric subjects who received treatment with VIREAD were consistent with those observed in clinical trials of VIREAD in adults.
Eighty-nine pediatric subjects (2 to less than 12 years of age) received VIREAD in Study 352 for a median exposure of 104 weeks. Of these, 4 subjects discontinued from the trial due to adverse reactions consistent with proximal renal tubulopathy. Three of these 4 subjects presented with hypophosphatemia and also had decreases in total body or spine BMD Z score. For additional information, consult the VIREAD prescribing information.
No new adverse reactions to Truvada were identified from two randomized placebo-controlled clinical trials, in which 2,830 HIV-1 uninfected adults received Truvada once daily for pre-exposure prophylaxis. Subjects were followed for a median of 71 weeks and 87 weeks, respectively. These trials enrolled HIV-negative individuals ranging in age from 18 to 67 years. The iPrEx trial enrolled only men or transgender women of Hispanic/Latino (72%), White (18%), Black (9%), and Asian (5%) race. The Partners PrEP trial enrolled both men (61−64% across treatment groups) and women in Kenya and Uganda. Table 5 provides a list of all adverse events that occurred in 2% or more of subjects in any treatment group in the iPrEx and Partners PrEP trials.
Laboratory Abnormalities: Table 6 provides a list of laboratory abnormalities observed in both trials. Six subjects in the TDF-containing arms of the Partners PrEP trial discontinued participation in the study due to an increase in blood creatinine compared with no discontinuations in the placebo group. One subject in the Truvada arm of the iPrEx trial discontinued from the study due to an increase in blood creatinine and another due to low phosphorous.
In addition to the laboratory abnormalities described above, Grade 1 proteinuria (1+) occurred in 6% of subjects receiving Truvada in the iPrEx trial. Grades 2−3 proteinuria (2–4+) and glycosuria (3+) occurred in less than 1% of subjects treated with Truvada in the iPrEx trial and Partners PrEP trial.
iPrEx Trial | Partners PrEP Trial | |||
---|---|---|---|---|
FTC/TDF (N=1251) | Placebo (N=1248) | FTC/TDF (N=1579) | Placebo (N=1584) | |
Gastrointestinal Disorders | ||||
Diarrhea | 7% | 8% | 2% | 3% |
Abdominal pain | 4% | 2% | - | - |
Infections and Infestations | ||||
Pharyngitis | 13% | 16% | - | - |
Urethritis | 5% | 7% | - | - |
Urinary tract infection | 2% | 2% | 5% | 7% |
Syphilis | 6% | 5% | - | - |
Secondary syphilis | 6% | 4% | - | - |
Anogenital warts | 2% | 3% | - | - |
Musculoskeletal and Connective Tissue Disorders | ||||
Back pain | 5% | 5% | - | - |
Nervous System Disorders | ||||
Headache | 7% | 6% | - | - |
Psychiatric Disorders | ||||
Depression | 6% | 7% | - | - |
Anxiety | 3% | 3% | - | - |
Reproductive System and Breast Disorders | ||||
Genital ulceration | 2% | 2% | 2% | 2% |
Investigations | ||||
Weight decreased | 3% | 2% | - | - |
iPrEx Trial | Partners PrEP Trial | |||||
---|---|---|---|---|---|---|
Grade | FTC/TDF (N=1251) | Placebo (N=1248) | FTC/TDF (N=1579) | Placebo (N=1584) | ||
Creatinine | 1 | (1.1 – 1.3 × ULN) | 27 (2%) | 21 (2%) | 18 (1%) | 12 (<1%) |
2–4 | (>1.4 × ULN) | 5 (<1%) | 3 (<1%) | 2 (<1%) | 1 (<1%) | |
Phosphorus | 1 | (2.5 – <LLN mg/dL) | 81 (7%) | 110 (9%) | NR | NR |
2–4 | (<2.0 mg/dL) | 123 (10%) | 101 (8%) | 140 (9%) | 136 (9%) | |
AST | 1 | (1.25 – <2.5 × ULN) | 175 (14%) | 175 (14%) | 20 (1%) | 25 (2%) |
2–4 | (>2.6 × ULN) | 57 (5%) | 61 (5%) | 10 (<1%) | 4 (<1%) | |
ALT | 1 | (1.25 – <2.5 × ULN) | 178 (14%) | 194 (16%) | 21 (1%) | 13 (<1%) |
2–4 | (>2.6 × ULN) | 84 (7%) | 82 (7%) | 4 (<1%) | 6 (<1%) | |
Hemoglobin | 1 | (8.5–10 mg/dL) | 49 (4%) | 62 (5%) | 56 (4%) | 39 (2%) |
2–4 | (<9.4 mg/dL) | 13 (1%) | 19 (2%) | 28 (2%) | 39 (2%) | |
Neutrophils | 1 | (1000 – 1300/mm3) | 23 (2%) | 25 (2%) | 208 (13%) | 163 (10%) |
2–4 | (<750/mm3) | 7 (<1%) | 7 (<1%) | 73 (5%) | 56 (3%) |
Changes in Bone Mineral Density
In clinical trials of HIV-1 uninfected individuals, decreases in BMD were observed. In the iPrEx trial, a substudy of 503 subjects found mean changes from baseline in BMD ranging from –0.4% to –1.0% across total hip, spine, femoral neck, and trochanter in the Truvada group compared with the placebo group, which returned toward baseline after discontinuation of treatment. Thirteen percent of subjects receiving Truvada versus 6% of subjects receiving placebo lost at least 5% of BMD at the spine during treatment. Bone fractures were reported in 1.7% of the Truvada group compared with 1.4% in the placebo group. No correlation between BMD and fractures was noted . The Partners PrEP trial found similar fracture rates between treatment and placebo groups (0.8% and 0.6%, respectively); no BMD evaluations were performed during this trial .
The following adverse reactions have been identified during postapproval use of VIREAD. No additional adverse reactions have been identified during postapproval use of EMTRIVA. Because postmarketing reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Immune System Disorders
allergic reaction, including angioedema
Metabolism and Nutrition Disorders
lactic acidosis, hypokalemia, hypophosphatemia
Respiratory, Thoracic, and Mediastinal Disorders
dyspnea
Gastrointestinal Disorders
pancreatitis, increased amylase, abdominal pain
Hepatobiliary Disorders
hepatic steatosis, hepatitis, increased liver enzymes (most commonly AST, ALT gamma GT)
Skin and Subcutaneous Tissue Disorders
rash
Musculoskeletal and Connective Tissue Disorders
rhabdomyolysis, osteomalacia (manifested as bone pain and which may contribute to fractures), muscular weakness, myopathy
Renal and Urinary Disorders
acute renal failure, renal failure, acute tubular necrosis, Fanconi syndrome, proximal renal tubulopathy, interstitial nephritis (including acute cases), nephrogenic diabetes insipidus, renal insufficiency, increased creatinine, proteinuria, polyuria
General Disorders and Administration Site Conditions
asthenia
The following adverse reactions, listed under the body system headings above, may occur as a consequence of proximal renal tubulopathy: rhabdomyolysis, osteomalacia, hypokalemia, muscular weakness, myopathy, hypophosphatemia.
No drug interaction trials have been conducted using Truvada tablets. Drug interaction trials have been conducted with Truvada and tenofovir DF, the components of Truvada. This section describes clinically relevant drug interactions observed with Truvada and tenofovir DF .
Coadministration of Truvada and didanosine should be undertaken with caution, and patients receiving this combination should be monitored closely for didanosine-associated adverse reactions. Didanosine should be discontinued in patients who develop didanosine-associated adverse reactions.
When tenofovir DF was administered with didanosine the Cmax and AUC of didanosine increased significantly . The mechanism of this interaction is unknown. Higher didanosine concentrations could potentiate didanosine-associated adverse reactions, including pancreatitis, and neuropathy. Suppression of CD4+ cell counts has been observed in patients receiving tenofovir DF with didanosine 400 mg daily.
In patients weighing greater than 60 kg, the didanosine dose should be reduced to 250 mg when it is coadministered with Truvada. Data are not available to recommend a dose adjustment of didanosine for adult or pediatric patients weighing less than 60 kg. When coadministered, Truvada and Videx EC may be taken under fasted conditions or with a light meal (less than 400 kcal, 20% fat).
Tenofovir decreases the AUC and Cmin of atazanavir . When coadministered with Truvada, it is recommended that atazanavir 300 mg is given with ritonavir 100 mg. Truvada should not be coadministered with atazanavir without ritonavir.
Lopinavir/ritonavir, atazanavir coadministered with ritonavir, and darunavir coadministered with ritonavir have been shown to increase tenofovir concentrations . Tenofovir DF is a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) transporters. When tenofovir DF is coadministered with an inhibitor of these transporters, an increase in absorption may be observed. Patients receiving Truvada concomitantly with lopinavir/ritonavir, ritonavir-boosted atazanavir, or ritonavir-boosted darunavir should be monitored for tenofovir DF-associated adverse reactions. Truvada should be discontinued in patients who develop tenofovir DF-associated adverse reactions.
Coadministration of Truvada and EPCLUSA® (sofosbuvir/velpatasvir) or HARVONI® (ledipasvir/sofosbuvir has been shown to increase tenofovir exposure .
In patients receiving Truvada concomitantly with EPCLUSA, monitor for adverse reactions associated with tenofovir DF.
In patients receiving Truvada concomitantly with HARVONI without an HIV-1 protease inhibitor/ritonavir or an HIV-1 protease inhibitor/cobicistat combination, monitor for adverse reactions associated with tenofovir DF.
In patients receiving Truvada concomitantly with HARVONI and an HIV-1 protease inhibitor/ritonavir or an HIV-1 protease inhibitor/cobicistat combination, consider an alternative HCV or antiretroviral therapy, as the safety of increased tenofovir concentrations in this setting has not been established. If coadministration is necessary, monitor for adverse reactions associated with tenofovir DF.
Truvada and tenofovir are primarily excreted by the kidneys by a combination of glomerular filtration and active tubular secretion . No drug-drug interactions due to competition for renal excretion have been observed; however, coadministration of Truvada with drugs that are eliminated by active tubular secretion may increase concentrations of Truvada, tenofovir, and/or the coadministered drug. Some examples include, but are not limited to, acyclovir, adefovir dipivoxil, cidofovir, ganciclovir, valacyclovir, valganciclovir, aminoglycosides (e.g., gentamicin), and high-dose or multiple NSAIDs . Drugs that decrease renal function may increase concentrations of Truvada and/or tenofovir.
Nursing mothers: Women infected with HIV-1 should be instructed not to breastfeed.
Pregnancy Category B
Antiretroviral Pregnancy Registry: To monitor fetal outcomes of pregnant women exposed to Truvada, an Antiretroviral Pregnancy Registry (APR) has been established. Healthcare providers are encouraged to register patients by calling 1-800-258-4263.
Risk Summary
Truvada has been evaluated in a limited number of women during pregnancy and postpartum. Available human and animal data suggest that Truvada does not increase the risk of major birth defects overall compared to the background rate. There are, however, no adequate and well-controlled trials in pregnant women. Because the studies in humans cannot rule out the possibility of harm, Truvada should be used during pregnancy only if clearly needed. If an uninfected individual becomes pregnant while taking Truvada for a PrEP indication, careful consideration should be given to whether use of Truvada should be continued, taking into account the potential increased risk of HIV-1 infection during pregnancy.
Clinical Considerations
As of July 2011, the APR has received prospective reports of 764 and 1219 exposures to emtricitabine- and tenofovir-containing regimens, respectively, in the first trimester; 321 and 455 exposures, respectively, in second trimester; and 140 and 257 exposures, respectively, in the third trimester. Birth defects occurred in 18 of 764 (2.4%) live births for emtricitabine-containing regimens and 27 of 1219 (2.2%) live births for tenofovir-containing regimens (first trimester exposure); and 10 of 461 (2.2%) live births for emtricitabine-containing regimens and 15 of 714 (2.1%) live births for tenofovir-containing regimens (second/third trimester exposure). Among pregnant women in the U.S. reference population, the background rate of birth defects is 2.7%. There was no association between Truvada or tenofovir and overall birth defects observed in the APR.
Animal Data
Truvada
The incidence of fetal variations and malformations was not increased in embryofetal toxicity studies performed with Truvada in mice at exposures (AUC) approximately 60-fold higher and in rabbits at approximately 120-fold higher than human exposures at the recommended daily dose.
Tenofovir DF
Reproduction studies have been performed in rats and rabbits at doses up to 14 and 19 times the human dose based on body surface area comparisons and revealed no evidence of impaired fertility or harm to the fetus due to tenofovir.
Nursing Mothers: The Centers for Disease Control and Prevention recommend that HIV-1 infected mothers not breastfeed their infants to avoid risking postnatal transmission of HIV-1.
Studies in humans have shown that both tenofovir and Truvada are excreted in human milk. Because the risks of low-level exposure to Truvada and tenofovir to infants are unknown, mothers should be instructed not to breastfeed if they are receiving Truvada, whether they are taking Truvada for treatment or to reduce the risk of acquiring HIV-1.
Truvada
Samples of breast milk obtained from five HIV-1 infected mothers show that Truvada is secreted in human milk. Breastfeeding infants whose mothers are being treated with Truvada may be at risk for developing viral resistance to Truvada. Other emtricitabine-associated risks in infants breastfed by mothers being treated with Truvada are unknown.
Tenofovir DF
Samples of breast milk obtained from five HIV-1 infected mothers show that tenofovir is secreted in human milk. Tenofovir-associated risks, including the risk of viral resistance to tenofovir, in infants breastfed by mothers being treated with tenofovir DF are unknown.
No pediatric clinical trial was conducted to evaluate the safety and efficacy of Truvada. Data from previously conducted trials with the individual drug products, EMTRIVA and VIREAD, were relied upon to support dosing recommendations for Truvada. For additional information, consult the prescribing information for EMTRIVA and VIREAD.
Truvada should only be administered to HIV-1 infected pediatric patients with body weight greater than or equal to 17 kg and who are able to swallow a whole tablet. Because it is a fixed-dose combination tablet, Truvada cannot be adjusted for patients of lower weight . Truvada has not been evaluated for use in pediatric patients weighing less than 17 kg.
Clinical trials of EMTRIVA or VIREAD did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, dose selection for the elderly patients should be cautious, keeping in mind the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
Treatment of HIV-1 Infection
The dosing interval for Truvada should be modified in HIV-infected adult patients with estimated creatinine clearance of 30–49 mL/min. Truvada should not be used in patients with estimated creatinine clearance below 30 mL/min and in patients with end-stage renal disease requiring dialysis .
Pre-exposure Prophylaxis
Truvada for a PrEP indication should not be used in HIV-1 uninfected individuals with estimated creatinine clearance below 60 mL/min. If a decrease in estimated creatinine clearance is observed in uninfected individuals while using Truvada for PrEP, evaluate potential causes and re-assess potential risks and benefits of continued use .
If overdose occurs, the patient must be monitored for evidence of toxicity, and standard supportive treatment applied as necessary.
Truvada: Limited clinical experience is available at doses higher than the therapeutic dose of EMTRIVA. In one clinical pharmacology trial, single doses of Truvada 1200 mg were administered to 11 subjects. No severe adverse reactions were reported.
Hemodialysis treatment removes approximately 30% of the Truvada dose over a 3-hour dialysis period starting within 1.5 hours of Truvada dosing (blood flow rate of 400 mL/min and a dialysate flow rate of 600 mL/min). It is not known whether Truvada can be removed by peritoneal dialysis.
Tenofovir DF: Limited clinical experience at doses higher than the therapeutic dose of VIREAD 300 mg is available. In one trial, 600 mg tenofovir DF was administered to 8 subjects orally for 28 days, and no severe adverse reactions were reported. The effects of higher doses are not known.
Tenofovir is efficiently removed by hemodialysis with an extraction coefficient of approximately 54%. Following a single 300 mg dose of VIREAD, a four-hour hemodialysis session removed approximately 10% of the administered tenofovir dose.
Truvada tablets are fixed-dose combination tablets containing Truvada and tenofovir DF. Truvada is a synthetic nucleoside analog of cytidine. Tenofovir DF is converted in vivo to tenofovir, an acyclic nucleoside phosphonate (nucleotide) analog of adenosine 5'-monophosphate. Both Truvada and tenofovir exhibit inhibitory activity against HIV-1 reverse transcriptase.
Truvada: The chemical name of Truvada is 5-fluoro-1-(2R,5S)-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Truvada is the (-) enantiomer of a thio analog of cytidine, which differs from other cytidine analogs in that it has a fluorine in the 5-position.
It has a molecular formula of C8H10FN3O3S and a molecular weight of 247.24. It has the following structural formula:
Truvada is a white to off-white crystalline powder with a solubility of approximately 112 mg/mL in water at 25 °C. The partition coefficient (log p) for Truvada is −0.43 and the pKa is 2.65.
Chemical Structure
Tenofovir DF: Tenofovir DF is a fumaric acid salt of the bis-isopropoxycarbonyloxymethyl ester derivative of tenofovir. The chemical name of tenofovir DF is 9-[(R)-2 [[bis[[(isopropoxycarbonyl)oxy]- methoxy]phosphinyl]methoxy]propyl]adenine fumarate (1:1). It has a molecular formula of C19H30N5O10P ∙ C4H4O4 and a molecular weight of 635.52. It has the following structural formula:
Tenofovir DF is a white to off-white crystalline powder with a solubility of 13.4 mg/mL in water at 25 °C. The partition coefficient (log p) for tenofovir disoproxil is 1.25 and the pKa is 3.75. All dosages are expressed in terms of tenofovir DF except where otherwise noted.
Truvada tablets are for oral administration, and are available in the following strengths:
All strengths of Truvada tablets also include the following inactive ingredients: croscarmellose sodium, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and pregelatinized starch (gluten free). The 200 mg/300 mg strength tablets are coated with Opadry II Blue Y-30-10701, which contains FD&C Blue #2 aluminum lake, hypromellose 2910, lactose monohydrate, titanium dioxide, and triacetin. The 167 mg/250 mg, 133 mg/200 mg, and 100 mg/150 mg strength tablets are coated with Opadry II Blue, which contains FD&C Blue #2 aluminum lake, hypromellose 2910, lactose monohydrate, titanium dioxide, and triacetin.
For additional information on Mechanism of Action, Antiviral Activity, Resistance and Cross Resistance, consult the EMTRIVA and VIREAD prescribing information.
Truvada is a fixed-dose combination of antiviral drugs Truvada and tenofovir DF .
Truvada: One Truvada tablet was bioequivalent to one EMTRIVA capsule (200 mg) plus one VIREAD tablet (300 mg) following single-dose administration to fasting healthy subjects (N=39).
Truvada: The pharmacokinetic properties of Truvada are summarized in Table 7. Following oral administration of EMTRIVA, Truvada is rapidly absorbed with peak plasma concentrations occurring at 1–2 hours postdose. Less than 4% of Truvada binds to human plasma proteins in vitro, and the binding is independent of concentration over the range of 0.02–200 μg/mL. Following administration of radiolabelled Truvada, approximately 86% is recovered in the urine and 13% is recovered as metabolites. The metabolites of Truvada include 3'-sulfoxide diastereomers and their glucuronic acid conjugate. Truvada is eliminated by a combination of glomerular filtration and active tubular secretion. Following a single oral dose of EMTRIVA, the plasma Truvada half-life is approximately 10 hours.
Tenofovir DF: The pharmacokinetic properties of tenofovir DF are summarized in Table 7. Following oral administration of VIREAD, maximum tenofovir serum concentrations are achieved in 1.0 ± 0.4 hour. Less than 0.7% of tenofovir binds to human plasma proteins in vitro, and the binding is independent of concentration over the range of 0.01–25 µg/mL. Approximately 70–80% of the intravenous dose of tenofovir is recovered as unchanged drug in the urine. Tenofovir is eliminated by a combination of glomerular filtration and active tubular secretion. Following a single oral dose of VIREAD, the terminal elimination half-life of tenofovir is approximately 17 hours.
Truvada | Tenofovir | |
---|---|---|
Fasted Oral Bioavailability | 92 (83.1–106.4) | 25 (NC–45.0) |
Plasma Terminal Elimination Half-Life | 10 (7.4–18.0) | 17 (12.0–25.7) |
Cmax | 1.8±0.72 | 0.30±0.09 |
AUC | 10.0±3.12 | 2.29±0.69 |
CL/F | 302±94 | 1043±115 |
CLrenal | 213±89 | 243±33 |
Effects of Food on Oral Absorption
Truvada may be administered with or without food. Administration of Truvada following a high fat meal (784 kcal; 49 grams of fat) or a light meal (373 kcal; 8 grams of fat) delayed the time of tenofovir Cmax by approximately 0.75 hour. The mean increases in tenofovir AUC and Cmax were approximately 35% and 15%, respectively, when administered with a high fat or light meal, compared to administration in the fasted state. In previous safety and efficacy trials, VIREAD (tenofovir) was taken under fed conditions. Truvada systemic exposures (AUC and Cmax) were unaffected when Truvada was administered with either a high fat or a light meal.
Specific Populations
Race
Truvada: No pharmacokinetic differences due to race have been identified following the administration of EMTRIVA.
Tenofovir DF: There were insufficient numbers from racial and ethnic groups other than Caucasian to adequately determine potential pharmacokinetic differences among these populations following the administration of VIREAD.
Gender
Truvada and Tenofovir DF: Truvada and tenofovir pharmacokinetics are similar in male and female subjects.
Pediatric Patients
The pharmacokinetic data for tenofovir and Truvada following administration of Truvada in pediatric subjects weighing 17 kg and above are not available. The dosing recommendations of Truvada in this population are based on the dosing recommendations of EMTRIVA and VIREAD in this population. Refer to the EMTRIVA and VIREAD prescribing information for pharmacokinetic information on the individual products in pediatric patients.
Truvada should not be administered to HIV-1 infected pediatric patients weighing less than 17 kg.
Geriatric Patients
Pharmacokinetics of Truvada and tenofovir have not been fully evaluated in the elderly (65 years of age and older).
Patients with Impaired Renal Function
The pharmacokinetics of Truvada and tenofovir are altered in subjects with renal impairment . In adult subjects with creatinine clearance below 50 mL/min, Cmax, and AUC0–∞ of Truvada and tenofovir were increased. It is recommended that the dosing interval for Truvada be modified in HIV-infected adult patients with estimated creatinine clearance 30–49 mL/min. No data are available to make dose recommendations in pediatric patients with renal impairment. Truvada should not be used in patients with estimated creatinine clearance below 30 mL/min and in patients with end-stage renal disease requiring dialysis .
Truvada for a PrEP indication should not be used in HIV-1 uninfected individuals with estimated creatinine clearance below 60 mL/min. If a decrease in estimated creatinine clearance is observed in uninfected individuals while using Truvada for PrEP, evaluate potential causes and re-assess potential risks and benefits of continued use .
Patients with Hepatic Impairment
The pharmacokinetics of tenofovir following a 300 mg dose of VIREAD have been studied in non-HIV infected subjects with moderate to severe hepatic impairment. There were no substantial alterations in tenofovir pharmacokinetics in subjects with hepatic impairment compared with unimpaired subjects. The pharmacokinetics of Truvada or Truvada have not been studied in subjects with hepatic impairment; however, Truvada is not significantly metabolized by liver enzymes, so the impact of liver impairment should be limited.
Assessment of Drug Interactions
The steady state pharmacokinetics of Truvada and tenofovir were unaffected when Truvada and tenofovir DF were administered together versus each agent dosed alone.
In vitro studies and clinical pharmacokinetic drug-drug interaction trials have shown that the potential for CYP mediated interactions involving Truvada and tenofovir with other medicinal products is low.
No clinically significant drug interactions have been observed between Truvada and famciclovir, indinavir, stavudine, tenofovir DF, and zidovudine (Tables 8 and 9). Similarly, no clinically significant drug interactions have been observed between tenofovir DF and efavirenz, methadone, nelfinavir, oral contraceptives, ribavirin, or sofosbuvir in trials conducted in healthy volunteers (Tables 10 and 11).
Coadministered Drug | Dose of Coadministered Drug (mg) | Truvada Dose (mg) | N | % Change of Truvada Pharmacokinetic Parameters | ||
---|---|---|---|---|---|---|
Cmax | AUC | Cmin | ||||
Tenofovir DF | 300 once daily × 7 days | 200 once daily × 7 days | 17 | ⇔ | ⇔ | ↑ 20 (↑ 12 to ↑ 29) |
Zidovudine | 300 twice daily × 7 days | 200 once daily × 7 days | 27 | ⇔ | ⇔ | ⇔ |
Indinavir | 800 × 1 | 200 × 1 | 12 | ⇔ | ⇔ | NA |
Famciclovir | 500 × 1 | 200 × 1 | 12 | ⇔ | ⇔ | NA |
Stavudine | 40 × 1 | 200 × 1 | 6 | ⇔ | ⇔ | NA |
Coadministered Drug | Dose of Coadministered Drug (mg) | Truvada Dose (mg) | N | % Change of Coadministered Drug Pharmacokinetic Parameters | ||
---|---|---|---|---|---|---|
Cmax | AUC | Cmin | ||||
Tenofovir DF | 300 once daily × 7 days | 200 once daily × 7 days | 17 | ⇔ | ⇔ | ⇔ |
Zidovudine | 300 twice daily × 7 days | 200 once daily × 7 days | 27 | ↑ 17 (↑ 0 to ↑ 38) | ↑ 13 (↑ 5 to ↑ 20) | ⇔ |
Indinavir | 800 × 1 | 200 × 1 | 12 | ⇔ | ⇔ | NA |
Famciclovir | 500 × 1 | 200 × 1 | 12 | ⇔ | ⇔ | NA |
Stavudine | 40 × 1 | 200 × 1 | 6 | ⇔ | ⇔ | NA |
Coadministered Drug | Dose of Coadministered Drug (mg) | N | % Change of Tenofovir Pharmacokinetic Parameters (90% CI) | ||
---|---|---|---|---|---|
Cmax | AUC | Cmin | |||
Atazanavir | 400 once daily × 14 days | 33 | ↑ 14 (↑ 8 to ↑ 20) | ↑ 24 (↑ 21 to ↑ 28) | ↑ 22 (↑ 15 to ↑ 30) |
Atazanavir/ Ritonavir | 300/100 once daily | 12 | ↑ 34 (↑ 20 to ↑ 51) | ↑ 37 (↑ 30 to ↑ 45) | ↑ 29 (↑ 21 to ↑ 36) |
Darunavir/ Ritonavir | 300/100 twice daily | 12 | ↑ 24 (↑ 8 to ↑ 42) | ↑ 22 (↑ 10 to ↑ 35) | ↑ 37 (↑ 19 to ↑ 57) |
Indinavir | 800 three times daily × 7 days | 13 | ↑ 14 (↓ 3 to ↑ 33) | ⇔ | ⇔ |
Ledipasvir/ Sofosbuvir | 90/400 once daily × 10 days | 24 | ↑ 47 (↑ 37 to ↑ 58) | ↑ 35 (↑ 29 to ↑42 ) | ↑ 47 (↑ 38 to ↑ 57) |
Ledipasvir/ Sofosbuvir | 23 | ↑ 64 (↑ 54 to ↑ 74) | ↑ 50 (↑ 42 to ↑ 59) | ↑ 59 (↑ 49 to ↑ 70) | |
Ledipasvir/ Sofosbuvir | 90/400 once daily × 14 days | 15 | ↑ 79 (↑ 56 to ↑ 104) | ↑ 98 (↑ 77 to ↑ 123) | ↑ 163 (↑ 132 to ↑ 197) |
Ledipasvir/ Sofosbuvir | 90/400 once daily × 10 days | 14 | ↑ 32 (↑ 25 to ↑ 39 ) | ↑ 40 (↑ 31 to ↑ 50 ) | ↑ 91 (↑ 74 to ↑ 110) |
Ledipasvir/ Sofosbuvir | 90/400 once daily × 10 days | 29 | ↑ 61 (↑ 51 to ↑ 72) | ↑ 65 (↑ 59 to ↑ 71) | ↑ 115 (↑ 105 to ↑ 126) |
Lopinavir/ Ritonavir | 400/100 twice daily × 14 days | 24 | ⇔ | ↑ 32 (↑ 25 to ↑ 38) | ↑ 51 (↑ 37 to ↑ 66) |
Saquinavir/ Ritonavir | 1000/100 twice daily × 14 days | 35 | ⇔ | ⇔ | ↑ 23 (↑ 16 to ↑ 30) |
Sofosbuvir | 400 single dose | 16 | ↑ 25 (↑ 8 to ↑ 45) | ⇔ | ⇔ |
Sofosbuvir/ Velpatasvir | 400/100 once daily | 24 | ↑ 55 (↑ 43 to ↑ 68) | ↑ 30 (↑ 24 to ↑ 36) | ↑ 39 (↑ 31 to ↑ 48) |
Sofosbuvir/ Velpatasvir | 400/100 once daily | 29 | ↑ 55 (↑ 45 to ↑ 66) | ↑ 39 (↑ 33 to ↑ 44) | ↑ 52 (↑ 45 to ↑ 59) |
Sofosbuvir/ Velpatasvir | 400/100 once daily | 15 | ↑ 77 (↑ 53 to ↑ 104) | ↑ 81 (↑ 68 to ↑ 94) | ↑ 121 (↑ 100 to ↑ 143) |
Sofosbuvir/ Velpatasvir | 400/100 once daily | 24 | ↑ 36 (↑ 25 to ↑ 47) | ↑ 35 (↑ 29 to ↑ 42) | ↑ 45 (↑ 39 to ↑ 51) |
Sofosbuvir/ Velpatasvir | 400/100 once daily | 24 | ↑ 44 (↑ 33 to ↑ 55) | ↑ 40 (↑ 34 to ↑ 46) | ↑ 84 (↑ 76 to ↑ 92) |
Sofosbuvir/ Velpatasvir | 400/100 once daily | 30 | ↑ 46 (↑ 39 to ↑ 54) | ↑ 40 (↑ 34 to ↑ 45) | ↑ 70 (↑ 61 to ↑ 79) |
Tacrolimus | 0.05 mg/kg twice daily × 7 days | 21 | ↑ 13 (↑ 1 to ↑ 27) | ⇔ | ⇔ |
Tipranavir/Ritonavir | 500/100 twice daily | 22 | ↓ 23 (↓ 32 to ↓ 13) | ↓ 2 (↓ 9 to ↑ 5) | ↑ 7 (↓ 2 to ↑ 17) |
750/200 twice daily (23 doses) | 20 | ↓ 38 (↓ 46 to ↓ 29) | ↑ 2 (↓ 6 to ↑ 10) | ↑ 14 (↑ 1 to ↑ 27) |
No effect on the pharmacokinetic parameters of the following coadministered drugs was observed with Truvada: abacavir, didanosine (buffered tablets), Truvada, entecavir, and lamivudine.
Coadministered Drug | Dose of Coadministered Drug (mg) | N | % Change of Coadministered Drug Pharmacokinetic Parameters (90% CI) | ||
---|---|---|---|---|---|
Cmax | AUC | Cmin | |||
Abacavir | 300 once | 8 | ↑ 12 (↓ 1 to ↑ 26) | ⇔ | NA |
Atazanavir | 400 once daily × 14 days | 34 | ↓ 21 (↓ 27 to ↓ 14) | ↓ 25 (↓ 30 to ↓ 19) | ↓ 40 (↓ 48 to ↓ 32) |
Atazanavir | Atazanavir/Ritonavir 300/100 once daily × 42 days | 10 | ↓ 28 (↓ 50 to ↑ 5) | ↓ 25 (↓ 42 to ↓ 3) | ↓ 23 (↓ 46 to ↑ 10) |
Darunavir | Darunavir/Ritonavir 300/100 once daily | 12 | ↑ 16 (↓ 6 to ↑ 42) | ↑ 21 (↓ 5 to ↑ 54) | ↑ 24 (↓ 10 to ↑ 69) |
Didanosine | 250 once, simultaneously with tenofovir DF and a light meal | 33 | ↓ 20 (↓ 32 to ↓ 7) | ⇔ | NA |
Truvada | 200 once daily × 7 days | 17 | ⇔ | ⇔ | ↑ 20 (↑ 12 to ↑ 29) |
Indinavir | 800 three times daily × 7 days | 12 | ↓ 11 (↓ 30 to ↑ 12) | ⇔ | ⇔ |
Entecavir | 1 once daily × 10 days | 28 | ⇔ | ↑ 13 (↑ 11 to ↑ 15) | ⇔ |
Lamivudine | 150 twice daily × 7 days | 15 | ↓ 24 (↓ 34 to ↓ 12) | ⇔ | ⇔ |
Lopinavir | Lopinavir/Ritonavir 400/100 twice daily × 14 days | 24 | ⇔ | ⇔ | ⇔ |
Ritonavir | ⇔ | ⇔ | ⇔ | ||
Saquinavir | Saquinavir/Ritonavir 1000/100 twice daily × 14 days | 32 | ↑ 22 (↑ 6 to ↑41) | ↑ 29 (↑ 12 to ↑ 48) | ↑ 47 (↑ 23 to ↑ 76) |
Ritonavir | ⇔ | ⇔ | ↑ 23 (↑ 3 to ↑ 46) | ||
Tacrolimus | 0.05 mg/kg twice daily × 7 days | 21 | ⇔ | ⇔ | ⇔ |
Tipranavir | Tipranavir/Ritonavir 500/100 twice daily | 22 | ↓ 17 (↓ 26 to ↓ 6) | ↓ 18 (↓ 25 to ↓ 9) | ↓ 21 (↓ 30 to ↓ 10) |
Tipranavir/Ritonavir 750/200 twice daily (23 doses) | 20 | ↓ 11 (↓ 16 to ↓ 4) | ↓ 9 (↓ 15 to ↓ 3) | ↓ 12 (↓ 22 to 0) |
Coadministration of tenofovir DF with didanosine results in changes in the pharmacokinetics of didanosine that may be of clinical significance. Concomitant dosing of tenofovir DF with didanosine enteric-coated capsules significantly increases the Cmax and AUC of didanosine. When didanosine 250 mg enteric-coated capsules were administered with tenofovir DF, systemic exposures of didanosine were similar to those seen with the 400 mg enteric-coated capsules alone under fasted conditions. The mechanism of this interaction is unknown. See Drug Interactions (7.1) regarding use of didanosine with VIREAD.
Mechanism of Action
Truvada: Truvada, a synthetic nucleoside analog of cytidine, is phosphorylated by cellular enzymes to form Truvada 5'-triphosphate. Truvada 5'-triphosphate inhibits the activity of the HIV-1 reverse transcriptase (RT) by competing with the natural substrate deoxycytidine 5'-triphosphate and by being incorporated into nascent viral DNA which results in chain termination. Truvada 5'-triphosphate is a weak inhibitor of mammalian DNA polymerases α, β, ε and mitochondrial DNA polymerase γ.
Tenofovir DF: Tenofovir DF is an acyclic nucleoside phosphonate diester analog of adenosine monophosphate. Tenofovir DF requires initial diester hydrolysis for conversion to tenofovir and subsequent phosphorylations by cellular enzymes to form tenofovir diphosphate. Tenofovir diphosphate inhibits the activity of HIV-1 RT by competing with the natural substrate deoxyadenosine 5'-triphosphate and, after incorporation into DNA, by DNA chain termination. Tenofovir diphosphate is a weak inhibitor of mammalian DNA polymerases α, β and mitochondrial DNA polymerase γ.
Antiviral Activity
Truvada and Tenofovir DF: No antagonism was observed in combination studies evaluating the cell culture antiviral activity of Truvada and tenofovir together.
Truvada: The antiviral activity of Truvada against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, the MAGI-CCR5 cell line, and peripheral blood mononuclear cells. The 50% effective concentration (EC50) values for Truvada were in the range of 0.0013–0.64 µM (0.0003–0.158 µg/mL). In drug combination studies of Truvada with nucleoside reverse transcriptase inhibitors (abacavir, lamivudine, stavudine, zidovudine), non-nucleoside reverse transcriptase inhibitors (delavirdine, efavirenz, nevirapine), and protease inhibitors (amprenavir, nelfinavir, ritonavir, saquinavir), no antagonism was observed. Truvada displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, and G (EC50 values ranged from 0.007–0.075 µM) and showed strain-specific activity against HIV-2 (EC50 values ranged from 0.007–1.5 µM).
Tenofovir DF: The antiviral activity of tenofovir against laboratory and clinical isolates of HIV-1 was assessed in lymphoblastoid cell lines, primary monocyte/macrophage cells, and peripheral blood lymphocytes. The EC50 values for tenofovir were in the range of 0.04–8.5 µM. In drug combination studies of tenofovir with nucleoside reverse transcriptase inhibitors (abacavir, didanosine, lamivudine, stavudine, zidovudine), non-nucleoside reverse transcriptase inhibitors (delavirdine, efavirenz, nevirapine), and protease inhibitors (amprenavir, indinavir, nelfinavir, ritonavir, saquinavir), no antagonism was observed. Tenofovir displayed antiviral activity in cell culture against HIV-1 clades A, B, C, D, E, F, G, and O (EC50 values ranged from 0.5–2.2 µM) and showed strain-specific activity against HIV-2 (EC50 values ranged from 1.6 µM to 5.5 µM).
Prophylactic Activity in a Nonhuman Primate Model of HIV Transmission
Truvada and Tenofovir DF: The prophylactic activity of the combination of daily oral Truvada (FTC) and tenofovir disoproxil fumarate (TDF) was evaluated in a controlled study of macaques inoculated once weekly for 14 weeks with SIV/HIV-1 chimeric virus (SHIV) applied to the rectal surface. Of the 18 control animals, 17 became infected after a median of 2 weeks. In contrast, 4 of the 6 animals treated daily with oral FTC and TDF remained uninfected and the two infections that did occur were significantly delayed until 9 and 12 weeks and exhibited reduced viremia. An M184I-expressing FTC-resistant variant emerged in 1 of the 2 macaques after 3 weeks of continued drug exposure.
Resistance
Truvada and Tenofovir DF: HIV-1 isolates with reduced susceptibility to the combination of Truvada and tenofovir have been selected in cell culture. Genotypic analysis of these isolates identified the M184V/I and/or K65R amino acid substitutions in the viral RT. In addition, a K70E substitution in HIV-1 reverse transcriptase has been selected by tenofovir and results in reduced susceptibility to tenofovir.
In a clinical trial of treatment-naïve subjects [Study 934, see Clinical Studies (14.1)], resistance analysis was performed on HIV-1 isolates from all confirmed virologic failure subjects with greater than 400 copies/mL of HIV-1 RNA at Week 144 or early discontinuation. Development of efavirenz resistance-associated substitutions occurred most frequently and was similar between the treatment arms. The M184V amino acid substitution, associated with resistance to EMTRIVA and lamivudine, was observed in 2/19 analyzed subject isolates in the EMTRIVA + VIREAD group and in 10/29 analyzed subject isolates in the zidovudine/lamivudine group. Through 144 weeks of Study 934, no subjects have developed a detectable K65R or K70E substitution in their HIV-1 as analyzed through standard genotypic analysis.
Truvada: Emtricitabine-resistant isolates of HIV-1 have been selected in cell culture and in vivo. Genotypic analysis of these isolates showed that the reduced susceptibility to Truvada was associated with a substitution in the HIV-1 RT gene at codon 184 which resulted in an amino acid substitution of methionine by valine or isoleucine (M184V/I).
Tenofovir DF: HIV-1 isolates with reduced susceptibility to tenofovir have been selected in cell culture. These viruses expressed a K65R substitution in RT and showed a 2–4 fold reduction in susceptibility to tenofovir.
In treatment-naïve subjects, isolates from 8/47 (17%) analyzed subjects developed the K65R substitution in the VIREAD arm through 144 weeks; 7 occurred in the first 48 weeks of treatment and 1 at Week 96. In treatment-experienced subjects, 14/304 (5%) isolates from subjects failing VIREAD through Week 96 showed greater than 1.4-fold (median 2.7) reduced susceptibility to tenofovir. Genotypic analysis of the resistant isolates showed a K65R amino acid substitution in the HIV-1 RT.
iPrEx Trial: In a clinical study of HIV-1 seronegative subjects [iPrEx Trial, see Clinical Studies (14.2)], no amino acid substitutions associated with resistance to Truvada or tenofovir were detected at the time of seroconversion among 48 subjects in the Truvada group and 83 subjects in the placebo group who became infected with HIV-1 during the trial. Ten subjects were observed to be HIV-1 infected at time of enrollment. The M184V/I substitutions associated with resistance to Truvada were observed in 3 of the 10 subjects (2 of 2 in the Truvada group and 1 of 8 in the placebo group). One of the two subjects in the Truvada group harbored wild type virus at enrollment and developed the M184V substitution 4 weeks after enrollment. The other subject had indeterminate resistance at enrollment but was found to have the M184I substitution 4 weeks after enrollment.
Partners PrEP Trial: In a clinical study of HIV-1 seronegative subjects [Partners PrEP Trial, See Clinical Studies (14.3)], no variants expressing amino acid substitutions associated with resistance to Truvada or tenofovir were detected at the time of seroconversion among 12 subjects in the Truvada group, 15 subjects in the VIREAD group, and 51 subjects in the placebo group. Fourteen subjects were observed to be HIV-1 infected at the time of enrollment (3 in the Truvada group, 5 in the VIREAD group, and 6 in the placebo group). One of the three subjects in the Truvada group who was infected with wild type virus at enrollment selected an M184V expressing virus by Week 12. Two of the five subjects in the VIREAD group had tenofovir-resistant viruses at the time of seroconversion; one subject infected with wild type virus at enrollment developed a K65R substitution by Week 16, while the second subject had virus expressing the combination of D67N and K70R substitutions upon seroconversion at Week 60, although baseline virus was not genotyped and it is unclear if the resistance emerged or was transmitted. Following enrollment, 4 subjects (2 in the VIREAD group, 1 in the Truvada group, and 1 in the placebo group) had virus expressing K103N or V106A substitutions, which confer high-level resistance to NNRTIs but have not been associated with tenofovir or Truvada and may have been present in the infecting virus.
Cross Resistance
Truvada and Tenofovir DF: Cross-resistance among certain NRTIs has been recognized. The M184V/I and/or K65R substitutions selected in cell culture by the combination of Truvada and tenofovir are also observed in some HIV-1 isolates from subjects failing treatment with tenofovir in combination with either Truvada or lamivudine, and either abacavir or didanosine. Therefore, cross-resistance among these drugs may occur in patients whose virus harbors either or both of these amino acid substitutions.
Truvada: Emtricitabine-resistant isolates (M184V/I) were cross-resistant to lamivudine but retained susceptibility in cell culture to the NRTIs didanosine, stavudine, tenofovir, and zidovudine, and to NNRTIs (delavirdine, efavirenz, and nevirapine). HIV-1 isolates containing the K65R substitution, selected in vivo by abacavir, didanosine, and tenofovir, demonstrated reduced susceptibility to inhibition by Truvada. Viruses harboring substitutions conferring reduced susceptibility to stavudine and zidovudine (M41L, D67N, K70R, L210W, T215Y/F, K219Q/E), or didanosine (L74V) remained sensitive to Truvada. HIV-1 containing the K103N substitution associated with resistance to NNRTIs was susceptible to Truvada.
Tenofovir DF: The K65R and K70E substitutions selected by tenofovir are also selected in some HIV-1 infected patients treated with abacavir or didanosine. HIV-1 isolates with the K65R and K70E substitutions also showed reduced susceptibility to Truvada and lamivudine. Therefore, cross-resistance among these NRTIs may occur in patients whose virus harbors the K65R or K70E substitutions. HIV-1 isolates from subjects (N=20) whose HIV-1 expressed a mean of 3 zidovudine-associated RT amino acid substitutions (M41L, D67N, K70R, L210W, T215Y/F, or K219Q/E/N) showed a 3.1-fold decrease in the susceptibility to tenofovir. Subjects whose virus expressed an L74V substitution without zidovudine resistance-associated substitutions (N=8) had reduced response to VIREAD. Limited data are available for patients whose virus expressed a Y115F substitution (N=3), Q151M substitution (N=2), or T69 insertion (N=4), all of whom had a reduced response.
Truvada: In long-term oral carcinogenicity studies of Truvada, no drug-related increases in tumor incidence were found in mice at doses up to 750 mg/kg/day or in rats at doses up to 600 mg/kg/day (31 times the human systemic exposure at the therapeutic dose).
Truvada was not genotoxic in the reverse mutation bacterial test (Ames test), or the mouse lymphoma or mouse micronucleus assays.
Truvada did not affect fertility in male rats at approximately 140-fold or in male and female mice at approximately 60-fold higher exposures (AUC) than in humans given the recommended 200 mg daily dose. Fertility was normal in the offspring of mice exposed daily from before birth (in utero) through sexual maturity at daily exposures (AUC) of approximately 60-fold higher than human exposures at the recommended 200 mg daily dose.
Tenofovir DF: Long-term oral carcinogenicity studies of tenofovir DF in mice and rats were carried out at exposures up to approximately 16 times (mice) and 5 times (rats) those observed in humans at the therapeutic dose for HIV-1 infection. At the high dose in female mice, liver adenomas were increased at exposures 16 times that in humans. In rats, the study was negative for carcinogenic findings at exposures up to 5 times that observed in humans at the therapeutic dose.
Tenofovir DF was mutagenic in the in vitro mouse lymphoma assay and negative in an in vitro bacterial mutagenicity test (Ames test). In an in vivo mouse micronucleus assay, tenofovir DF was negative when administered to male mice.
There were no effects on fertility, mating performance, or early embryonic development when tenofovir DF was administered to male rats at a dose equivalent to 10 times the human dose based on body surface area comparisons for 28 days prior to mating and to female rats for 15 days prior to mating through day 7 of gestation. There was, however, an alteration of the estrous cycle in female rats.
Tenofovir and tenofovir DF administered in toxicology studies to rats, dogs, and monkeys at exposures (based on AUCs) greater than or equal to 6-fold those observed in humans caused bone toxicity. In monkeys the bone toxicity was diagnosed as osteomalacia. Osteomalacia observed in monkeys appeared to be reversible upon dose reduction or discontinuation of tenofovir. In rats and dogs, the bone toxicity manifested as reduced bone mineral density. The mechanism(s) underlying bone toxicity is unknown.
Evidence of renal toxicity was noted in four animal species. Increases in serum creatinine, BUN, glycosuria, proteinuria, phosphaturia, and/or calciuria and decreases in serum phosphate were observed to varying degrees in these animals. These toxicities were noted at exposures (based on AUCs) 2–20 times higher than those observed in humans. The relationship of the renal abnormalities, particularly the phosphaturia, to the bone toxicity is not known.
Clinical Study 934 supports the use of Truvada tablets for the treatment of HIV-1 infection. Additional data in support of the use of Truvada are derived from clinical Study 903, in which lamivudine and tenofovir DF were used in combination in treatment-naïve adults, and clinical Study 303 in which Truvada and lamivudine demonstrated comparable efficacy, safety, and resistance patterns as part of multidrug regimens. For additional information about these trials, consult the prescribing information for tenofovir DF and Truvada. The iPrEx study and Partners PrEP study support the use of Truvada to help reduce the risk of acquiring HIV-1.
Data through 144 weeks are reported for Study 934, a randomized, open-label, active-controlled multicenter trial comparing Truvada + tenofovir DF administered in combination with efavirenz versus zidovudine/lamivudine fixed-dose combination administered in combination with efavirenz in 511 antiretroviral-naïve subjects. From Weeks 96 to 144 of the trial, subjects received Truvada with efavirenz in place of Truvada + tenofovir DF with efavirenz. Subjects had a mean age of 38 years ; 86% were male, 59% were Caucasian, and 23% were Black. The mean baseline CD4+ cell count was 245 cells/mm3 (range 2–1191) and median baseline plasma HIV-1 RNA was 5.01 log10 copies/mL (range 3.56–6.54). Subjects were stratified by baseline CD4+ cell count (< or ≥200 cells/mm3); 41% had CD4+ cell counts <200 cells/mm3 and 51% of subjects had baseline viral loads >100,000 copies/mL. Treatment outcomes through 48 and 144 weeks for those subjects who did not have efavirenz resistance at baseline are presented in Table 12.
Outcomes | At Week 48 | At Week 144 | ||
---|---|---|---|---|
FTC+TDF +EFV (N=244) | AZT/3TC+EFV (N=243) | FTC+TDF+EFV (N=227) | AZT/3TC+EFV (N=229) | |
Responder | 84% | 73% | 71% | 58% |
Virologic failure | 2% | 4% | 3% | 6% |
Rebound | 1% | 3% | 2% | 5% |
Never suppressed | 0% | 0% | 0% | 0% |
Change in antiretroviral regimen | 1% | 1% | 1% | 1% |
Death | <1% | 1% | 1% | 1% |
Discontinued due to adverse event | 4% | 9% | 5% | 12% |
Discontinued for other reasons | 10% | 14% | 20% | 22% |
Through Week 48, 84% and 73% of subjects in the Truvada + tenofovir DF group and the zidovudine/lamivudine group, respectively, achieved and maintained HIV-1 RNA <400 copies/mL (71% and 58% through Week 144). The difference in the proportion of subjects who achieved and maintained HIV-1 RNA <400 copies/mL through 48 weeks largely results from the higher number of discontinuations due to adverse events and other reasons in the zidovudine/lamivudine group in this open-label trial. In addition, 80% and 70% of subjects in the Truvada + tenofovir DF group and the zidovudine/lamivudine group, respectively, achieved and maintained HIV-1 RNA <50 copies/mL through Week 48 (64% and 56% through Week 144). The mean increase from baseline in CD4+ cell count was 190 cells/mm3 in the Truvada + tenofovir DF group and 158 cells/mm3 in the zidovudine/lamivudine group at Week 48 (312 and 271 cells/mm3 at Week 144).
Through 48 weeks, 7 subjects in the Truvada + tenofovir DF group and 5 subjects in the zidovudine/lamivudine group experienced a new CDC Class C event (10 and 6 subjects through 144 weeks).
The iPrEx trial was a randomized, double-blind, placebo-controlled multinational study evaluating Truvada in 2,499 HIV-seronegative men or transgender women who have sex with men and with evidence of high-risk behavior for HIV-1 infection. Evidence of high-risk behavior included any one of the following reported to have occurred up to six months prior to study screening: no condom use during anal intercourse with an HIV-1 positive partner or a partner of unknown HIV status; anal intercourse with more than 3 sex partners; exchange of money, gifts, shelter, or drugs for anal sex; sex with male partner and diagnosis of sexually transmitted infection; no consistent use of condoms with sex partner known to be HIV-1 positive.
All subjects received monthly HIV-1 testing, risk-reduction counseling, condoms, and management of sexually transmitted infections. Of the 2499 enrolled, 1251 received Truvada and 1248 received placebo. The mean age of subjects was 27 years; 5% were Asian, 9% Black, 18% White, and 72% Hispanic/Latino.
Subjects were followed for 4,237 person-years. The primary outcome measure for the study was the incidence of documented HIV seroconversion. At the end of treatment, emergent HIV-1 seroconversion was observed in 131 subjects, of which 48 occurred in the Truvada group and 83 occurred in the placebo group, indicating a 42% (95% CI: 18–60%) reduction in risk. Risk reduction was found to be higher (53%; 95% CI: 34–72%) among subjects who reported previous unprotected anal intercourse (URAI) at screening (732 and 753 subjects reported URAI within the last 12 weeks at screening in the Truvada and placebo groups, respectively). In a post-hoc case control study of plasma and intracellular drug levels in about 10% of study subjects, risk reduction appeared to be greatest in subjects with detectable intracellular tenofovir. Efficacy was therefore strongly correlated with adherence.
The Partners PrEP trial was a randomized, double-blind, placebo-controlled 3-arm trial conducted in 4,758 serodiscordant heterosexual couples in Kenya and Uganda to evaluate the efficacy and safety of TDF (N=1589) and FTC/TDF (N=1583) versus (parallel comparison) placebo (N=1586) in preventing HIV-1 acquisition by the uninfected partner.
All subjects received monthly HIV-1 testing, evaluation of adherence, assessment of sexual behavior, and safety evaluations. Women were also tested monthly for pregnancy. Women who became pregnant during the trial had study drug interrupted for the duration of the pregnancy and while breastfeeding. The uninfected partner subjects were predominantly male (61–64% across study drug groups) and had a mean age of 33–34 years.
Following 7,827 person-years of follow up, 82 emergent HIV-1 seroconversions were reported, with an overall observed seroincidence rate of 1.05 per 100 person-years. Of the 82 seroconversions, 13 and 52 occurred in partner subjects randomized to Truvada and placebo, respectively. Two of the 13 seroconversions in the Truvada arm and 3 of the 52 seroconversions in the placebo arm occurred in women during treatment interruptions for pregnancy. The risk reduction for Truvada relative to placebo was 75% (95% CI: 55–87%). In a post-hoc case control study of plasma drug levels in about 10% of study subjects, risk reduction appeared to be greatest in subjects with detectable plasma tenofovir. Efficacy was therefore strongly correlated with adherence.
Truvada tablets are available in bottles containing 30 tablets with child-resistant closure as follows:
Store at 25 °C (77 °F), excursions permitted to 15 °C–30 °C (59 °F–86 °F).
As a part of patient counseling, healthcare providers must review the Truvada Medication Guide with every uninfected individual taking Truvada to reduce the risk of acquiring HIV.
Advise the patient to read the FDA-approved patient labeling (Medication Guide).
Important Information for All Patients and Uninfected Individuals
Advise patients and uninfected individuals that:
Advise patients and uninfected individuals to avoid doing things that can spread HIV-1 or HBV infection :
Nursing Mothers
Patients and uninfected individuals should not breastfeed because the drugs in Truvada can be passed to the baby in breast milk, and it is not known whether they can harm the baby. HIV-positive women should also not breastfeed because of the risk of passing the HIV-1 virus to the baby.
Patients Coinfected with HIV-1 and HBV
Inform patients that severe acute exacerbations of hepatitis B have been reported in patients who are coinfected with hepatitis B virus (HBV) and HIV-1 and have discontinued Truvada. Patients should not discontinue Truvada without first informing their healthcare provider. All patients who are infected with HBV need close medical follow-up for several months after stopping Truvada to monitor for exacerbations of hepatitis .
New Onset or Worsening Renal Impairment
Inform patients that renal impairment, including cases of acute renal failure and Fanconi syndrome, has been reported in association with the use of VIREAD. Truvada should be avoided with concurrent or recent use of a nephrotoxic agent (e.g., high-dose or multiple NSAIDs) . Dosing interval of Truvada may need adjustment in HIV-1 infected patients with renal impairment. Truvada for a PrEP indication should not be used in HIV-1 uninfected individuals if estimated creatinine clearance is less than 60 mL/min. If a decrease in estimated creatinine clearance is observed in uninfected individuals while using Truvada for PrEP, evaluate potential causes and re-assess potential risks and benefits of continued use .
Lactic Acidosis and Severe Hepatomegaly
Inform patients and uninfected individuals that lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported. Treatment with Truvada should be suspended in any patient or uninfected individual who develops clinical symptoms suggestive of lactic acidosis or pronounced hepatotoxicity .
Drug Interactions
Inform patients that:
Bone Effects
Inform patients that decreases in bone mineral density have been observed with the use of VIREAD or Truvada. Consider bone monitoring in patients and uninfected individuals who have a history of pathologic bone fracture or at risk for osteopenia .
Immune Reconstitution Syndrome
In some patients treated with combination antiretroviral therapy, including Truvada, signs and symptoms of inflammation from previous infections may occur soon after anti-HIV treatment is started. It is believed that these symptoms are due to an improvement in the body's immune response, enabling the body to fight infections that may have been present with no obvious symptoms. Advise patients to inform their healthcare provider immediately of any symptoms of infection .
Treatment of HIV-1 Infection
When Truvada is used in the treatment of HIV-infection, advise patients that:
Pre-Exposure Prophylaxis
When Truvada is used to reduce the risk of acquiring HIV-1, advise uninfected individuals about the importance of the following:
Women who are pregnant should learn about the risks and benefits of Truvada to reduce the risk of acquiring HIV-1 during their pregnancy.
Encourage use of the Agreement Form for Initiating Truvada for PrEP of Sexually Acquired HIV-1 Infection.
COMPLERA, DESCOVY, EMTRIVA, EPCLUSA, GENVOYA, HARVONI, HEPSERA, ODEFSEY, SOVALDI, STRIBILD, Truvada, VEMLIDY, and VIREAD are trademarks of Gilead Sciences, Inc., or its related companies. ATRIPLA is a trademark of Bristol-Myers Squibb & Gilead Sciences, LLC. All other trademarks referenced herein are the property of their respective owners.
© 2017 Gilead Sciences, Inc. All rights reserved.
Manufactured for and distributed by:
Gilead Sciences, Inc.
Foster City, CA 94404
21752-GS-031
This Medication Guide has been approved by the U.S. Food and Drug Administration | Revised: April 2017 | |||||
Medication Guide Truvada® (tru-VAH-dah) (emtricitabine and tenofovir disoproxil fumarate) tablets | ||||||
Read this Medication Guide before you start taking Truvada and each time you get a refill. There may be new information. This information does not take the place of talking to your healthcare provider about your medical condition or your treatment. This Medication Guide provides information about two different ways that Truvada may be used (see the Medication Guide section "What is Truvada?" for important information about how Truvada may be used):
HIV is the virus that causes AIDS (Acquired Immune Deficiency Syndrome). | ||||||
What is the most important information I should know about Truvada? If you also have hepatitis B virus (HBV) infection and take Truvada, your hepatitis B may become worse if you stop taking Truvada.
Tell your healthcare provider about any new or unusual symptoms you may have after you stop taking Truvada. For more information about side effects, see the section "What are the possible side effects of Truvada?" in this Medication Guide. Other important information for people who take Truvada to help reduce their risk of getting HIV-1 infection: Before taking Truvada to reduce your risk of getting HIV-1 infection:
| ||||||
|
| |||||
While you are taking Truvada to reduce your risk of getting HIV-1:
See the section "What should I avoid while taking Truvada?" and talk to your healthcare provider for more information about how to prevent HIV-1 infection. | ||||||
What is Truvada? Truvada contains the prescription medicines Truvada (EMTRIVA®) and tenofovir disoproxil fumarate (VIREAD®). Truvada is used:
Use of Truvada to treat HIV-1 infection:
Reducing the amount of HIV-1 and increasing the CD4+ (T) cells in your blood may help improve your immune system. This may reduce your risk of death or getting infections that can happen when your immune system is weak (opportunistic infections).
Use of Truvada to reduce the risk of HIV-1 infection:
| ||||||
Who should not take Truvada? For people using Truvada to reduce the risk of getting HIV-1 infection: | ||||||
Truvada can only help reduce your risk of getting HIV-1 before you are infected. Do not take Truvada to help reduce your risk of getting HIV-1 if:
| ||||||
What should I tell my healthcare provider before taking Truvada? Tell your healthcare provider if you:
Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins, and herbal supplements. Do not take Truvada if you also take any of the medicines listed below:
Truvada may interact with other medicines. Especially tell your healthcare provider if you take: | ||||||
|
| |||||
Your healthcare provider may need to check you more often or change your dose if you take any of these medicines and Truvada. Know the medicines you take. Keep a list of them to show your healthcare provider or pharmacist when you get a new medicine. | ||||||
How should I take Truvada?
| ||||||
What should I avoid while taking Truvada? While taking Truvada, avoid doing things that increase your risk of getting HIV-1 or spreading HIV-1 to other people.
Ask your healthcare provider if you have any questions about how to prevent getting HIV-1 or spreading HIV-1 to other people. | ||||||
What are the possible side effects of Truvada? Truvada may cause serious side effects, including:
The most common side effects of Truvada in people taking Truvada to treat HIV-1 infection include: | ||||||
|
| |||||
Common side effects in people who take Truvada to reduce the risk of getting HIV-1 infection include: | ||||||
|
|
| ||||
Tell your healthcare provider if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of Truvada. For more information, ask your healthcare provider or pharmacist. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. | ||||||
How should I store Truvada?
Keep Truvada and all other medicines out of reach of children. | ||||||
General information about Truvada. Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use Truvada for a condition for which it was not prescribed. Do not give Truvada to other people, even if they have the same symptoms you have. It may harm them. This Medication Guide summarizes the most important information about Truvada. If you would like more information, talk with your healthcare provider. You can ask your healthcare provider or pharmacist for information about Truvada that is written for health professionals. For more information, call 1-800-445-3235 or go to www. TRUVADA.com. | ||||||
What are the ingredients in Truvada? Active ingredients: Truvada and tenofovir disoproxil fumarate. Inactive ingredients: Croscarmellose sodium, lactose monohydrate, magnesium stearate, microcrystalline cellulose, and pregelatinized starch (gluten free). The 200 mg/300 mg strength tablets are coated with Opadry II Blue Y-30-10701, which contains FD&C Blue #2 aluminum lake, hypromellose 2910, lactose monohydrate, titanium dioxide, and triacetin. The 167 mg/250 mg, 133 mg/200 mg, and 100 mg/150 mg strength tablets are coated with Opadry II Blue, which contains FD&C Blue #2 aluminum lake, hypromellose 2910, lactose monohydrate, titanium dioxide, and triacetin. Manufactured for and distributed by: Gilead Sciences, Inc. Foster City, CA 94404 COMPLERA, DESCOVY, EMTRIVA, EPCLUSA, HARVONI, HEPSERA, GENVOYA, ODEFSEY, STRIBILD, Truvada, VEMLIDY, and VIREAD are trademarks of Gilead Sciences, Inc., or its related companies. ATRIPLA is a trademark of Bristol-Myers Squibb & Gilead Sciences, LLC. All other trademarks referenced herein are the property of their respective owners. © 2017 Gilead Sciences, Inc. All rights reserved. 21752-GS-031 |
NDC 61958-0701-1
Truvada ®
(emtricitabine and tenofovir
disoproxil fumarate)
Tablets
30 tablets
Rx only
DISPENSER: Each time Truvada® is dispensed
give the patient the attached Medication Guide.
NDC 61958-0703-1
Truvada ®
(emtricitabine and tenofovir
disoproxil fumarate)
Tablets
100 mg/150 mg
30 tablets
Rx only
DISPENSER: Each time Truvada® is dispensed
give the patient the attached Medication Guide.
NDC 61958-0704-1
Truvada ®
(emtricitabine and tenofovir
disoproxil fumarate)
Tablets
133 mg/200 mg
30 tablets
Rx only
DISPENSER: Each time Truvada® is dispensed
give the patient the attached Medication Guide.
NDC 61958-0705-1
Truvada ®
(emtricitabine and tenofovir
disoproxil fumarate)
Tablets
167 mg/250 mg
30 tablets
Rx only
DISPENSER: Each time Truvada® is dispensed
give the patient the attached Medication Guide.
Depending on the reaction of the Truvada after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Truvada not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.
Is Truvada addictive or habit forming?Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.
Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.
Visitors | % | ||
---|---|---|---|
With a meal | 1 | 100.0% |
Visitors | % | ||
---|---|---|---|
30-45 | 1 | 100.0% |
There are no reviews yet. Be the first to write one! |
The information was verified by Dr. Rachana Salvi, MD Pharmacology