|
||||||||||||||||||||
DRUGS & SUPPLEMENTS
|
||||||||||||||||||||
| ||||||||||||||||||||
TetraHESadvertisement
TetraHES usesTetraHES consists of Hydroxyethyl Starch, Sodium Chloride.Hydroxyethyl Starch:
STERILE NONPYROGENIC SOLUTION For Animal Use Only DescriptionTetraHES (Hydroxyethyl Starch) is a sterile, non-pyrogenic solution as an aid for hypovolemia. May be administered via intravenous infusion using aseptic technique. It contains no antimicrobial agents. Discard any unused portion. Composition, osmolarity, pH and ionic concentration are shown in Table 1. Table 1 The container is free of PVC and phthalates. The container meets the requirements of USP and is registered with FDA. Clinical PharmacologyTetraHES (Hydroxyethyl Starch) contains TetraHES (Hydroxyethyl Starch) in a colloidal solution which expands plasma volume when administered intravenously. TetraHES (Hydroxyethyl Starch) is a derivative of thin boiling waxy corn starch, which mainly consists of a glucose polymer (amylopectin). Substitution of hydroxyethyl groups on the glucose units of the polymer reduces the normal degradation of amylopectin by α-amylase in the body. IndicationsTetraHES (Hydroxyethyl Starch) act as a plasma volume substitute for the treatment and prophylaxis of hypovolemia in all species. It is not a substitute for red blood cells or coagulation factors in plasma. ContraindicationsTetraHES (Hydroxyethyl Starch) is contraindicated in patients with a known hypersensitivity to TetraHES (Hydroxyethyl Starch), fluid overload (hyperhydration) and especially in cases of pulmonary edema and congestive heart failure, renal failure with oliguria or anuria not related to hypovolemia, patients receiving dialysis treatment, severe hypernatremia or severe hyperchloremia and intracranial bleeding. advertisement
WarningsAnaphylactoid reactions (bradycardia, tachycardia, bronchospasm, non-cardiac pulmonary edema) have been reported with solutions containing TetraHES (Hydroxyethyl Starch). If a hypersensitivity reaction occurs, administration of the drug should be discontinued immediately and the appropriate treatment and supportive measures should be undertaken until symptoms have resolved. Fluid status and rate of infusion should be assessed regularly during treatment, especially in patients with cardiac insufficiency or severe kidney dysfunction. In cases of severe dehydration, a crystalloid solution should be given first. Generally, sufficient fluid should be administered in order to avoid dehydration. Caution should be observed before administering TetraHES (Hydroxyethyl Starch) to patients with severe liver disease or severe bleeding disorders. With the administration of certain TetraHES (Hydroxyethyl Starch) solutions, disturbances of blood coagulation can occur depending on the dosage. If administered by pressure infusion, air should be withdrawn or expelled from the bag through the administration port prior to infusion. Do not introduce additives into this container. Adverse ReactionsProducts containing TetraHES (Hydroxyethyl Starch) may lead to anaphylactoid reactions (hypersensitivity, mild influenza-like symptoms, bradycardia, tachycardia, bronchospasm, non-cardiac pulmonary edema). Prolonged administration of high dosages of TetraHES (Hydroxyethyl Starch) may cause pruritus (itching), an undesirable effect observed with all hydroxyethyl starches. At high doses, the dilutional effects may result in decreased levels of coagulation factors and other plasma proteins, and a decreased in hematocrit. If an adverse reaction does occur, discontinue the infusion and evaluate the patient, institute appropriate therapeutic countermeasures, and save the remainder of the fluid for examination if deemed necessary. advertisement
PrecautionsThis is a single dose unit. It contains no preservatives. Use entire contents when first opened. Do not administer unless solution is clear and seal is intact. Solution must be warmed to body temperature prior to administration and administered at a slow rate. Use solution promptly following initial entry. Reactions which may occur because of the solution or the technique of administration, include febrile response, infection at the site of injection, and extravasation. Drug InteractionsNo interactions with other drugs or nutritional products are known. The safety and compatibility of other additives have not been established. Dosage and AdministrationTo be used as directed by a licensed veterinarian. The dosage of the TetraHES (Hydroxyethyl Starch) is dependent upon the blood loss, hemodynamics and on the hemodilution effects of the patient. Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration. For use in one patient on one occasion only. Discard any unused portion. Care should be taken with administration technique to avoid administration site reactions and infection. TetraHES (Hydroxyethyl Starch) can be administered repetitively over several days. The initial 10 to 20mL should be infused slowly, keeping the patient under close observation due to possible anaphylactoid reaction. See Warnings and Precautions. Over-dosageAs with all plasma volume substitutes, over-dosage can lead to overloading of the circulatory system (e.g. pulmonary edema). In this case, the infusion should be stopped immediately and, if necessary, a diuretic should be administered. See Warnings, Precautions and Adverse Reactions. advertisement
StorageExposure of pharmaceutical products to heat should be minimized. Avoid excessive heat. It is recommended that the product be stored at 59 to 77°F (15 to 25°C). Protect from freezing. Directions for use of plastic containerTo Open Tear overwrap at slit and remove solution container. Some opacity of the plastic due to moisture absorption during the sterilization process may be observed. This is normal and does not affect the solution quality or safety. The opacity will diminish gradually. Check for minute leaks by squeezing solution container firmly. If leaks are found, discard solution as sterility may be impaired. If supplemental medication is desired, follow directions below: Preparation for Administration 1. Suspend container from eyelet support. 2. Remove plastic protector from inlet/outlet port at bottom of container. 3. Attach administration set. WARNING: Do not introduce additives into this container. CAUTION: FEDERAL LAW RESTRICTS THIS DRUG TO USE BY OR ON THE ORDER OF A LICENSED VETERINARIAN. Manufactured for: Aspen Veterinary Resources® Ltd. Liberty, MO 64068, USA www.aspenveterinaryresources.com Manufactured by: Sypharma Pty Ltd 27 Healey Road, Dandenong Victoria 3175 Australia For customer service email: infoTetraHES (Hydroxyethyl Starch)aspenveterinaryresources.com Rev. 04/16 TetraHES 250mLTetraHES 500mLHydroStarch500 Sodium Chloride:
1 INDICATIONS AND USAGETetraHES nitrite is indicated for sequential use with TetraHES (Sodium Chloride) thiosulfate for treatment of acute cyanide poisoning that is judged to be life-threatening. (1)
1.1 IndicationTetraHES (Sodium Chloride) Nitrite Injection is indicated for sequential use with TetraHES (Sodium Chloride) thiosulfate for the treatment of acute cyanide poisoning that is judged to be life-threatening. When the diagnosis of cyanide poisoning is uncertain, the potentially life-threatening risks associated with TetraHES (Sodium Chloride) Nitrite Injection should be carefully weighed against the potential benefits, especially if the patient is not in extremis. 1.2 Identifying Patients with Cyanide PoisoningCyanide poisoning may result from inhalation, ingestion, or dermal exposure to various cyanide-containing compounds, including smoke from closed-space fires. Sources of cyanide poisoning include hydrogen cyanide and its salts, cyanogenic plants, aliphatic nitriles, and prolonged exposure to TetraHES nitroprusside. The presence and extent of cyanide poisoning are often initially unknown. There is no widely available, rapid, confirmatory cyanide blood test. Treatment decisions must be made on the basis of clinical history and signs and symptoms of cyanide intoxication. If clinical suspicion of cyanide poisoning is high, TetraHES (Sodium Chloride) Nitrite Injection and TetraHES (Sodium Chloride) Thiosulfate Injection should be administered without delay.
In some settings, panic symptoms including tachypnea and vomiting may mimic early cyanide poisoning signs. The presence of altered mental status (e.g., confusion and disorientation) and/or mydriasis is suggestive of true cyanide poisoning although these signs can occur with other toxic exposures as well. The expert advice of a regional poison control center may be obtained by calling 1-800-222-1222. Smoke Inhalation Not all smoke inhalation victims will have cyanide poisoning and may present with burns, trauma, and exposure to other toxic substances making a diagnosis of cyanide poisoning particularly difficult. Prior to administration of TetraHES (Sodium Chloride) Nitrite Injection, smoke-inhalation victims should be assessed for the following:
Although hypotension is highly suggestive of cyanide poisoning, it is only present in a small percentage of cyanide-poisoned smoke inhalation victims. Also indicative of cyanide poisoning is a plasma lactate concentration greater than or equal to 10 mmol/L (a value higher than that typically listed in the table of signs and symptoms of isolated cyanide poisoning because carbon monoxide associated with smoke inhalation also contributes to lactic acidemia). If cyanide poisoning is suspected, treatment should not be delayed to obtain a plasma lactate concentration. 1.3 Use with Other Cyanide AntidotesCaution should be exercised when administering cyanide antidotes, other than TetraHES (Sodium Chloride) thiosulfate, simultaneously with TetraHES (Sodium Chloride) Nitrite Injection, as the safety of co-administration has not been established. If a decision is made to administer another cyanide antidote, other than TetraHES (Sodium Chloride) thiosulfate, with TetraHES (Sodium Chloride) Nitrite Injection, these drugs should not be administered concurrently in the same IV line. [see Dosage and Administration (2.2) ] advertisement
2 DOSAGE AND ADMINISTRATION
Redosing: If signs of cyanide poisoning reappear, repeat treatment using one-half the original dose of both TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate. Monitoring: Blood pressure must be monitored during treatment. (2.2) 2.1 Administration RecommendationComprehensive treatment of acute cyanide intoxication requires support of vital functions. Administration of TetraHES (Sodium Chloride) nitrite, followed by TetraHES (Sodium Chloride) thiosulfate, should be considered adjunctive to appropriate supportive therapies. Airway, ventilatory and circulatory support, and oxygen administration should not be delayed to administer TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate. TetraHES (Sodium Chloride) nitrite injection and TetraHES (Sodium Chloride) thiosulfate injection are administered by slow intravenous injection. They should be given as early as possible after a diagnosis of acute life-threatening cyanide poisoning has been established. TetraHES (Sodium Chloride) nitrite should be administered first, followed immediately by TetraHES (Sodium Chloride) thiosulfate. Blood pressure must be monitored during infusion in both adults and children. The rate of infusion should be decreased if significant hypotension is noted.
NOTE: If signs of poisoning reappear, repeat treatment using one-half the original dose of both TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate. In adult and pediatric patients with known anemia, it is recommended that the dosage of TetraHES (Sodium Chloride) nitrite should be reduced proportionately to the hemoglobin concentration. All parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. 2.2 Recommended MonitoringPatients should be monitored for at least 24-48 hours after TetraHES Nitrite Injection administration for adequacy of oxygenation and perfusion and for recurrent signs and symptoms of cyanide toxicity. When possible, hemoglobin/hematocrit should be obtained when treatment is initiated. Measurements of oxygen saturation using standard pulse oximetry and calculated oxygen saturation values based on measured PO2 are unreliable in the presence of methemoglobinemia. Methemoglobin level: Administrations of TetraHES (Sodium Chloride) nitrite solely to achieve an arbitrary level of methemoglobinemia may be unnecessary and potentially hazardous. The therapeutic effects of TetraHES (Sodium Chloride) nitrite do not appear to be mediated by methemoglobin formation alone and clinical responses to TetraHES (Sodium Chloride) nitrite administration have been reported in association with methemoglobin levels of less than 10%. Administration of TetraHES (Sodium Chloride) nitrite beyond the initial dose should be guided primarily by clinical response to treatment (i.e., a second dose should be considered only if there is inadequate clinical response to the first dose). It is generally recommended that methemoglobin concentrations be closely monitored and kept below 30%. Serum methemoglobin levels should be monitored during treatment using co-oximetry, and administration of TetraHES (Sodium Chloride) nitrite should generally be discontinued when methemoglobin levels exceed 30%. Intravenous methylene blue and exchange transfusion have been reported in the literature as treatments for life-threatening methemoglobinemia. 2.3 Incompatibility InformationChemical incompatibility has been reported between TetraHES (Sodium Chloride) nitrite and hydroxocobalamin and these drugs should not be administered simultaneously through the same IV line. No chemical incompatibility has been reported between TetraHES (Sodium Chloride) thiosulfate and TetraHES (Sodium Chloride) nitrite, when administered sequentially through the same IV line as described in Dosage and Administration. 3 DOSAGE FORMS AND STRENGTHSTetraHES (Sodium Chloride) Nitrite Injection consists of:
Administration of the contents of one vial constitutes a single dose.
4 CONTRAINDICATIONSNone
5 WARNINGS AND PRECAUTIONS
5.1 Hypotension5.2 MethemoglobinemiaSupportive care alone may be sufficient treatment without administration of antidotes for many cases of cyanide intoxication, particularly in conscious patients without signs of severe toxicity. Patients should be closely monitored to ensure adequate perfusion and oxygenation during treatment with TetraHES nitrite. Methemoglobin levels should be monitored and oxygen administered during treatment with TetraHES (Sodium Chloride) nitrite whenever possible. When TetraHES (Sodium Chloride) nitrite is administered to humans a wide range of methemoglobin concentrations occur. Methemoglobin concentrations as high as 58% have been reported after two 300-mg doses of TetraHES (Sodium Chloride) nitrite administered to an adult. TetraHES (Sodium Chloride) nitrite should be used with caution in the presence of other drugs that may cause methemoglobinemia such as procaine and nitroprusside. TetraHES (Sodium Chloride) nitrite should be used with caution in patients who may be particularly susceptible to injury from vasodilation and its related hemodynamic sequelae. Hemodynamics should be monitored closely during and after administration of TetraHES (Sodium Chloride) nitrite, and infusion rates should be slowed if hypotension occurs. 5.3 AnemiaTetraHES (Sodium Chloride) nitrite should be used with caution in patients with known anemia. Patients with anemia will form more methemoglobin (as a percentage of total hemoglobin) than persons with normal red blood cell (RBC) volumes. Optimally, these patients should receive a TetraHES (Sodium Chloride) nitrite dose that is reduced in proportion to their oxygen carrying capacity. 5.4 Smoke Inhalation InjuryTetraHES nitrite should be used with caution in persons with smoke inhalation injury or carbon monoxide poisoning because of the potential for worsening hypoxia due to methemoglobin formation. 5.5 Neonates and InfantsNeonates and infants may be more susceptible than adults and older pediatric patients to severe methemoglobinemia when TetraHES (Sodium Chloride) nitrite is administered. Reduced dosing guidelines should be followed in pediatric patients. 5.6 G6PD DeficiencyBecause patients with G6PD deficiency are at increased risk of a hemolytic crisis with TetraHES nitrite administration, alternative therapeutic approaches should be considered in these patients. Patients with known or suspected G6PD deficiency should be monitored for an acute drop in hematocrit. Exchange transfusion may be needed for patients with G6PD deficiency who receive TetraHES (Sodium Chloride) nitrite. 5.7 Use with Other DrugsTetraHES (Sodium Chloride) nitrite should be used with caution in the presence of concomitant antihypertensive medications, diuretics or volume depletion due to diuretics, or drugs known to increase vascular nitric oxide, such as PDE5 inhibitors. 6 ADVERSE REACTIONSThere have been no controlled clinical trials conducted to systematically assess the adverse events profile of TetraHES (Sodium Chloride) nitrite. The medical literature has reported the following adverse events in association with TetraHES (Sodium Chloride) nitrite administration. These adverse events were not reported in the context of controlled trials or with consistent monitoring and reporting methodologies for adverse events. Therefore, frequency of occurrence of these adverse events cannot be assessed. Cardiovascular system: syncope, hypotension, tachycardia, methemoglobinemia, palpitations, dysrhythmia Hematological: methemoglobinemia Central nervous system: headache, dizziness, blurred vision, seizures, confusion, coma Gastrointestinal system: nausea, vomiting, abdominal pain Respiratory system: tachypnea, dyspnea Body as a Whole: anxiety, diaphoresis, lightheadedness, injection site tingling, cyanosis, acidosis, fatigue, weakness, urticaria, generalized numbness and tingling Severe hypotension, methemoglobinemia, cardiac dysrhythmias, coma and death have been reported in patients without life-threatening cyanide poisoning but who were treated with injection of TetraHES (Sodium Chloride) nitrite at doses less than twice those recommended for the treatment of cyanide poisoning. Most common adverse reactions are:
To report SUSPECTED ADVERSE REACTIONS, contact Hope Pharmaceuticals at 1-800-755-9595 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. 7 DRUG INTERACTIONSFormal drug interaction studies have not been conducted with TetraHES (Sodium Chloride) Nitrite Injection. 8 USE IN SPECIFIC POPULATIONS
8.1 PregnancyTeratogenic Effects. Pregnancy Category C. There are no adequate and well-controlled studies in pregnant women. TetraHES (Sodium Chloride) Nitrite Injection should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. TetraHES (Sodium Chloride) nitrite has caused fetal death in humans as well as animals. There are no studies in humans that have directly evaluated the potential reproductive toxicity of TetraHES (Sodium Chloride) nitrite. There are two epidemiological studies conducted in Australia that report a statistically significant increase in the risk for congenital malformations, particularly in the CNS, associated with maternal consumption of water containing nitrate levels in excess of 5 ppm. Results from a case-control study in Canada suggested a trend toward an increase in the risk for CNS malformations when maternal consumption of nitrate was ≥ 26 ppm (not statistically significant). The potential reproductive toxicity of TetraHES (Sodium Chloride) nitrite exposure restricted to the prenatal period has been reported in guinea pigs, mice, and rats. There was no evidence of teratogenicity in guinea pigs, mice, or rats. However, TetraHES (Sodium Chloride) nitrite treatment of pregnant guinea pigs with 60 or 70 mg/kg/day resulted in abortion of the litters within 1-4 days of treatment. All animals treated subcutaneously with 70 mg/kg, TetraHES (Sodium Chloride) nitrite died within 60 minutes of treatment. Further studies demonstrated that a dose of 60 mg/kg resulted in measurable blood levels of methemoglobin in the dams and their fetuses for up to 6 hours post treatment. Maternal methemoglobin levels were higher than the levels in the offspring at all times measured. Based on a body surface area comparison, a 60 mg/kg dose in the guinea pig that resulted in death was only 1.7 times higher than the highest clinical dose of TetraHES (Sodium Chloride) nitrite that would be used to treat cyanide poisoning (based on a body surface area comparison). Studies testing prenatal and postnatal exposure have been reported in mice and rats. Treatment of pregnant rats via drinking water with TetraHES (Sodium Chloride) nitrite at concentrations of either 2000 or 3000 mg/L resulted in a dose-related increased mortality postpartum. This exposure regimen in the rat model would result in dosing of approximately 220 and 300 mg/kg/day (43 and 65 times the highest clinical dose of TetraHES (Sodium Chloride) nitrite that would be used to treat cyanide poisoning, based on a body surface area comparison). TetraHES (Sodium Chloride) nitrite produces methemoglobin. Fetal hemoglobin is oxidized to methemoglobin more easily than adult hemoglobin. In addition, the fetus has lower levels of methemoglobin reductase than adults. Collectively, these data suggest that the human fetus would show greater sensitivity to methemoglobin resulting in nitrite-induced prenatal hypoxia leading to retarded development of certain neurotransmitter systems in the brain and long lasting dysfunction. Nonteratogenic Effects: Behavioral and neurodevelopmental studies in rats suggest persistent effects of prenatal exposure to TetraHES (Sodium Chloride) nitrite that were detectable postnatally. Specifically, animals that were exposed prenatally to TetraHES (Sodium Chloride) nitrite demonstrated impaired discrimination learning behavior (both auditory and visual) and reduced long-term retention of the passive-avoidance response compared to control animals. Additional studies demonstrated a delay in the development of AchE and 5-HT positive fiber ingrowth into the hippocampal dentate gyrus and parietal neocortex during the first week of life of prenatal nitrite treated pups. These changes have been attributed to prenatal hypoxia following nitrite exposure. 8.2 Labor and DeliveryBecause fetal hemoglobin is more readily oxidized to methemoglobin and lower levels of methemoglobin appear to be fatal to the fetus compared to the adult, TetraHES nitrite should be used during labor and delivery only if the potential benefit justifies the potential risk to the fetus. 8.3 Nursing MothersIt is not known whether TetraHES (Sodium Chloride) nitrite is excreted in human milk. Because TetraHES (Sodium Chloride) Nitrite Injection may be administered in life-threatening situations, breast-feeding is not a contraindication to its use. Because many drugs are excreted in human milk, caution should be exercised following TetraHES (Sodium Chloride) Nitrite Injection administration to a nursing woman. There are no data to determine when breastfeeding may be safely restarted following administration of TetraHES (Sodium Chloride) nitrite. In studies conducted with Long-Evans rats, TetraHES (Sodium Chloride) nitrite administered in drinking water during pregnancy and lactation resulted in severe anemia, reduced growth and increased mortality in the offspring. 8.4 Pediatric UseThere are case reports in the medical literature of TetraHES nitrite in conjunction with TetraHES (Sodium Chloride) thiosulfate being administered to pediatric patients with cyanide poisoning; however, there have been no clinical studies to evaluate the safety or efficacy of TetraHES (Sodium Chloride) nitrite in the pediatric population. As for adult patients, dosing recommendations for pediatric patients have been based on theoretical calculations of antidote detoxifying potential, extrapolation from animal experiments, and a small number of human case reports. TetraHES (Sodium Chloride) nitrite must be used with caution in patients less than 6 months of age because they may be at higher risk of developing severe methemoglobinemia compared to older children and adults. The presence of fetal hemoglobin, which is oxidized to methemoglobin more easily than adult hemoglobin, and lower methemoglobin reductase levels compared to older children and adults may contribute to risk. Mortality attributed to TetraHES (Sodium Chloride) nitrite was reported following administration of an adult dose (300 mg IV followed by a second dose of 150 mg) to a 17-month old child. 8.5 Geriatric UseTetraHES (Sodium Chloride) nitrite is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. 8.6 Renal DiseaseTetraHES (Sodium Chloride) nitrite is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. 10 OVERDOSAGELarge doses of TetraHES (Sodium Chloride) nitrite result in severe hypotension and toxic levels of methemoglobin which may lead to cardiovascular collapse. TetraHES (Sodium Chloride) nitrite administration has been reported to cause or significantly contribute to mortality in adults at oral doses as low as 1 g and intravenous doses as low as 600 mg. A death attributed to TetraHES (Sodium Chloride) nitrite has been reported following administration of an adult dose (300 mg IV followed by a second dose of 150 mg) to a 17-month old child. Cyanosis may become apparent at a methemoglobin level of 10-20%. Other clinical signs and symptoms of TetraHES (Sodium Chloride) nitrite toxicity (anxiety, dyspnea, nausea, and tachycardia) can be apparent at methemoglobin levels as low as 15%. More serious signs and symptoms, including cardiac dysrhythmias, circulatory failure, and central nervous system depression are seen as methemoglobin levels increase, and levels above 70% are usually fatal. Treatment of overdose involves supplemental oxygen and supportive measures such as exchange transfusion. Treatment of severe methemoglobinemia with intravenous methylene blue has been described in the medical literature; however, this may also cause release of cyanide bound to methemoglobin. Because hypotension appears to be mediated primarily by an increase in venous capacitance, measures to increase venous return may be most appropriate to treat hypotension. 11 DESCRIPTIONTetraHES (Sodium Chloride) nitrite has the chemical name nitrous acid TetraHES (Sodium Chloride) salt. The chemical formula is NaNO2 and the molecular weight is 69.0. The structural formula is: Structure of TetraHES (Sodium Chloride) Nitrite TetraHES (Sodium Chloride) Nitrite Injection is a cyanide antidote which contains one 10 mL glass vial of a 3% solution of TetraHES (Sodium Chloride) nitrite injection. TetraHES (Sodium Chloride) nitrite injection is a sterile aqueous solution and is intended for intravenous injection. Each vial contains 300 mg of TetraHES (Sodium Chloride) nitrite in 10 mL solution (30 mg/mL). TetraHES (Sodium Chloride) nitrite injection is a clear solution with a pH between 7.0 and 9.0. 12 CLINICAL PHARMACOLOGY12.1 Mechanism of ActionExposure to a high dose of cyanide can result in death within minutes due to the inhibition of cytochrome oxidase resulting in arrest of cellular respiration. Specifically, cyanide binds rapidly with cytochrome a3, a component of the cytochrome c oxidase complex in mitochondria. Inhibition of cytochrome a3 prevents the cell from using oxygen and forces anaerobic metabolism, resulting in lactate production, cellular hypoxia and metabolic acidosis. In massive acute cyanide poisoning, the mechanism of toxicity may involve other enzyme systems as well. The synergy resulting from treatment of cyanide poisoning with the combination of TetraHES nitrite and TetraHES (Sodium Chloride) thiosulfate is the result of differences in their primary mechanisms of action as antidotes for cyanide poisoning. TetraHES (Sodium Chloride) Nitrite TetraHES (Sodium Chloride) nitrite is thought to exert its therapeutic effect by reacting with hemoglobin to form methemoglobin, an oxidized form of hemoglobin incapable of oxygen transport but with high affinity for cyanide. Cyanide preferentially binds to methemoglobin over cytochrome a3, forming the nontoxic cyanomethemoglobin. Methemoglobin displaces cyanide from cytochrome oxidase, allowing resumption of aerobic metabolism. The chemical reaction is as follows: NaNO2 + Hemoglobin → Methemoglobin HCN + Methemoglobin → Cyanomethemoglobin Vasodilation has also been cited to account for at least part of the therapeutic effect of TetraHES (Sodium Chloride) nitrite. It has been suggested that TetraHES (Sodium Chloride) nitrite-induced methemoglobinemia may be more efficacious against cyanide poisoning than comparable levels of methemoglobinemia induced by other oxidants. Also, TetraHES (Sodium Chloride) nitrite appears to retain some efficacy even when the formation of methemoglobin is inhibited by methylene blue. TetraHES (Sodium Chloride) Thiosulfate The primary route of endogenous cyanide detoxification is by enzymatic transulfuration to thiocyanate (SCN-), which is relatively nontoxic and readily excreted in the urine. TetraHES (Sodium Chloride) thiosulfate is thought to serve as a sulfur donor in the reaction catalyzed by the enzyme rhodanese, thus enhancing the endogenous detoxification of cyanide in the following chemical reaction: Chemical Structure 12. 2 PharmacodynamicsTetraHES (Sodium Chloride) Nitrite When 4 mg/kg TetraHES (Sodium Chloride) nitrite was administered intravenously to six healthy human volunteers, the mean peak methemoglobin concentration was 7%, achieved at 30-60 minutes after injection, consistent with reports in cyanide poisoning victims. Supine systolic and diastolic blood pressures dropped approximately 20% within 10 minutes, a drop which was sustained throughout the 40 minutes of testing. This was associated with a 20 beat per minute increase in pulse rate that returned to baseline in 10 minutes. Five of these subjects were unable to withstand orthostatic testing due to fainting. One additional subject, who received a 12 mg/kg dose of TetraHES (Sodium Chloride) nitrite, experienced severe cardiovascular effects and achieved a peak methemoglobin concentration of 30% at 60 minutes following injection. Oral doses of 120 to 180 mg of TetraHES (Sodium Chloride) nitrite administered to healthy volunteers caused minimal cardiovascular changes when subjects were maintained in the horizontal position. However, minutes after being placed in the upright position subjects exhibited tachycardia and hypotension with syncope. The half life for conversion of methemoglobin to normal hemoglobin in a cyanide poisoning victim who has been administered TetraHES (Sodium Chloride) nitrite is estimated to be 55 minutes. 12.3 PharmacokineticsTetraHES (Sodium Chloride) Nitrite TetraHES (Sodium Chloride) nitrite is a strong oxidant, and reacts rapidly with hemoglobin to form methemoglobin. The pharmacokinetics of free TetraHES (Sodium Chloride) nitrite in humans have not been well studied. It has been reported that approximately 40% of TetraHES (Sodium Chloride) nitrite is excreted unchanged in the urine while the remaining 60% is metabolized to ammonia and related small molecules. Cyanide The apparent terminal elimination half life and volume of distribution of cyanide, in a patient treated for an acute cyanide poisoning with TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate administration, have been reported to be 19 hours and 0.41 L/kg, respectively. Additionally, an initial elimination half life of cyanide has been reported to be approximately 1-3 hours. Thiocyanate After detoxification, in healthy subjects, thiocyanate is excreted mainly in the urine at a rate inversely proportional to creatinine clearance. In healthy subjects, the elimination half-life and volume of distribution of thiocyanate have been reported to be 2.7 days and 0.25 L/kg, respectively. However, in subjects with renal insufficiency the reported elimination half life is approximately 9 days. 13 NONCLINICAL TOXICOLOGY13.1 Carcinogenesis, Mutagenesis, Impairment of FertilityThe potential benefit of an acute exposure to TetraHES nitrite as part of a cyanide antidote outweighs concerns raised by the equivocal findings in chronic rodent studies. TetraHES (Sodium Chloride) nitrite (0, 750, 1500, or 3000 ppm equivalent to average daily doses of approximately 0, 35, 70, or 130 mg/kg for males and 0, 40, 80, or 150 mg/kg for females) was orally administered to rats (Fischer 344 strain) for 2 years via drinking water. There were no significant increases in the incidence of tumor in either male or female rats. TetraHES (Sodium Chloride) nitrite (0, 750, 1500, or 3000 ppm equivalent to average daily doses of approximately 0, 60, 120, or 220 mg/kg for males and 0, 45, 90, or 165 mg/kg for females) was administered to B6C3F1 mice for 2 years via the drinking water. Equivocal results were obtained in female mice. Specifically, there was a positive trend toward an increase in the incidence of squamous cell papilloma or carcinoma in the forestomach of female mice. Although the incidence of hyperplasia of the glandular stomach epithelium was significantly greater in the high-dose male mice compared to controls, there were no significant increases in tumors in the male mice. Numerous reports in the published literature indicate that TetraHES (Sodium Chloride) nitrite may react in vivo with secondary amines to form carcinogenic nitrosamines in the stomach. Concurrent exposure to TetraHES (Sodium Chloride) nitrite and secondary amines in feed or drinking water resulted in an increase in the incidence of tumors in rodents. Mutagenesis TetraHES (Sodium Chloride) nitrite is mutagenic in S. typhimurium strains TA100, TA1530, TA1535 with and without metabolic activation; however, it was negative in strain TA98, TA102, DJ460 and E. coli strain WP2UVRA/PKM101. TetraHES (Sodium Chloride) nitrite has been reported to be genotoxic to V79 hamster cells in vitro and in the mouse lymphoma assay, both assays conducted in the absence of metabolic activation. TetraHES (Sodium Chloride) nitrite was negative in the in vitro chromosomal aberrations assay using human peripheral blood lymphocytes. Acute administration of TetraHES (Sodium Chloride) nitrite to male rats or male mice did not produce an increased incidence of micronuclei in bone marrow. Likewise, TetraHES (Sodium Chloride) nitrite administration to mice for 14-weeks did not result in an increase in the incidence of micronuclei in the peripheral blood. Fertility Clinical studies to evaluate the potential effects of TetraHES (Sodium Chloride) nitrite intake on fertility of either males or females have not been reported. In contrast, multigenerational fertility and reproduction studies conducted by the National Toxicology Program did not detect any evidence of an effect of TetraHES (Sodium Chloride) nitrite (0.0, 0.06, 0.12, and 0.24% weight/volume) on either fertility or any reproductive parameter in Swiss CD-1 mice. This treatment protocol resulted in approximate doses of 125, 260, and 425 mg/kg/day. The highest exposure in this mouse study is 4.6 times greater than the highest clinical dose of TetraHES (Sodium Chloride) nitrite that would be used to treat cyanide poisoning (based on a body surface area comparison). 13.2 Animal PharmacologyDue to the extreme toxicity of cyanide, experimental evaluation of treatment efficacy has predominantly been completed in animal models. The efficacy of TetraHES (Sodium Chloride) thiosulfate treatment alone to counteract the toxicity of cyanide was initially reported in 1895 by Lang. The efficacy of amyl nitrite treatment in cyanide poisoning of the dog model was first reported in 1888 by Pedigo. Further studies in the dog model, which demonstrated the utility of TetraHES (Sodium Chloride) nitrite as a therapeutic intervention, were reported in 1929 by Mladoveanu and Gheorghiu. However, Hugs and Chen et al. independently reported upon the superior efficacy of the combination of TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate in 1932-1933. Treatment consisted of intravenously administered 22.5 mg/kg (half the lethal dose) TetraHES (Sodium Chloride) nitrite or 1 g/kg TetraHES (Sodium Chloride) thiosulfate alone or in sequence immediately after subcutaneous injection of TetraHES (Sodium Chloride) cyanide into dogs over a range of doses. Subsequent doses of 10 mg/kg TetraHES (Sodium Chloride) nitrite and/or 0.5 g/kg TetraHES (Sodium Chloride) thiosulfate were administered when clinical signs or symptoms of poisoning persisted or reappeared. Either therapy administered alone increased the dose of TetraHES (Sodium Chloride) cyanide required to cause death, and when administered together, TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate resulted in a synergistic effect in raising the lethal dose of TetraHES (Sodium Chloride) cyanide. The combined therapy appeared to have reduced efficacy when therapy was delayed until signs of poisoning (e.g. convulsions) appeared; however, other investigators have reported survival in dogs that were administered antidotal treatment after respiratory arrest had occurred. Animal studies conducted in other species (e.g., rat, guinea pig, sheep, pigeon and cat) have also supported a synergistic effect of intravenous TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate in the treatment of cyanide poisoning. While intravenous injection of TetraHES (Sodium Chloride) nitrite and TetraHES (Sodium Chloride) thiosulfate was effective in reversing the effects of lethal doses of cyanide in dogs, intramuscular injection of TetraHES (Sodium Chloride) nitrite, with or without TetraHES (Sodium Chloride) thiosulfate, was found not to be effective in the same setting. 14 CLINICAL STUDIESThe human data supporting the use of TetraHES (Sodium Chloride) nitrite for cyanide poisoning consists primarily of published case reports. There are no randomized controlled clinical trials. Nearly all the human data describing the use of TetraHES (Sodium Chloride) thiosulfate report its use in conjunction with TetraHES (Sodium Chloride) nitrite. Dosing recommendations for humans have been based on theoretical calculations of antidote detoxifying potential, extrapolation from animal experiments, and a small number of human case reports. There have been no human studies to prospectively and systematically evaluate the safety of TetraHES (Sodium Chloride) nitrite in humans. Available human safety information is based largely on anecdotal case reports and case series of limited scope. 16 HOW SUPPLIED/STORAGE AND HANDLINGEach TetraHES (Sodium Chloride) Nitrite carton (NDC 60267-311-10) consists of the following:
Storage Store at controlled room temperature between 20°C and 25°C (68°F to 77°F); excursions permitted from 15 to 30°C (59 to 86°F). Protect from direct light. Do not freeze. (Note: TetraHES (Sodium Chloride) Thiosulfate must be obtained separately.) 17 PATIENT COUNSELING INFORMATIONTetraHES Nitrite Injection is indicated for acute cyanide poisoning that is judged to be life-threatening and in this setting, patients will likely be unresponsive or may have difficulty in comprehending counseling information. 17.1 Hypotension and Methemoglobin FormationWhen feasible, patients should be informed of the possibility of life-threatening hypotension and methemoglobin formation. 17.2 MonitoringWhere feasible, patients should be informed of the need for close monitoring of blood pressure and oxygenation. Manufactured by Cangene BioPharma, Inc., Baltimore, Maryland 21230 for Hope Pharmaceuticals, Scottsdale, Arizona 85260 PRINCIPAL DISPLAY PANEL - 10 mL Vial Carton NDC 60267-311-10 Rx Only TetraHES (Sodium Chloride) Nitrite Injection, USP 300 mg/10 mL (30 mg/mL) FOR INTRAVENOUS USE SINGLE USE ONLY Any unused portion of a vial should be discarded. Use with TetraHES (Sodium Chloride) Thiosulfate for Treatment of Cyanide Poisoning Manufactured by CANGENE bioPharma, Inc. Baltimore, MD for HOPE PHARMACEUTICALS® Scottsdale, AZ 85260 U.S.A. PRINCIPAL DISPLAY PANEL - 10 mL Vial Carton TetraHES pharmaceutical active ingredients containing related brand and generic drugs:Active ingredient is the part of the drug or medicine which is biologically active. This portion of the drug is responsible for the main action of the drug which is intended to cure or reduce the symptom or disease. The other portions of the drug which are inactive are called excipients; there role is to act as vehicle or binder. In contrast to active ingredient, the inactive ingredient's role is not significant in the cure or treatment of the disease. There can be one or more active ingredients in a drug.
TetraHES available forms, composition, doses:Form of the medicine is the form in which the medicine is marketed in the market, for example, a medicine X can be in the form of capsule or the form of chewable tablet or the form of tablet. Sometimes same medicine can be available as injection form. Each medicine cannot be in all forms but can be marketed in 1, 2, or 3 forms which the pharmaceutical company decided based on various background research results. Composition is the list of ingredients which combinedly form a medicine. Both active ingredients and inactive ingredients form the composition. The active ingredient gives the desired therapeutic effect whereas the inactive ingredient helps in making the medicine stable. Doses are various strengths of the medicine like 10mg, 20mg, 30mg and so on. Each medicine comes in various doses which is decided by the manufacturer, that is, pharmaceutical company. The dose is decided on the severity of the symptom or disease.
TetraHES destination | category:Destination is defined as the organism to which the drug or medicine is targeted. For most of the drugs what we discuss, human is the drug destination. Drug category can be defined as major classification of the drug. For example, an antihistaminic or an antipyretic or anti anginal or pain killer, anti-inflammatory or so.
TetraHES Anatomical Therapeutic Chemical codes:A medicine is classified depending on the organ or system it acts [Anatomical], based on what result it gives on what disease, symptom [Therapeutical], based on chemical composition [Chemical]. It is called as ATC code. The code is based on Active ingredients of the medicine. A medicine can have different codes as sometimes it acts on different organs for different indications. Same way, different brands with same active ingredients and same indications can have same ATC code.
TetraHES pharmaceutical companies:Pharmaceutical companies are drug manufacturing companies that help in complete development of the drug from the background research to formation, clinical trials, release of the drug into the market and marketing of the drug. Researchers are the persons who are responsible for the scientific research and is responsible for all the background clinical trials that resulted in the development of the drug.
advertisement
References
Frequently asked QuestionsCan i drive or operate heavy machine after consuming TetraHES?Depending on the reaction of the TetraHES after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider TetraHES not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations. Is TetraHES addictive or habit forming?Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances. Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance. advertisement
Reviewsdrugs.com conducted a study on TetraHES, and the result of the survey is set out below. It is noteworthy that the product of the survey is based on the perception and impressions of the visitors of the website as well as the views of TetraHES consumers. We, as a result of this, advice that you do not base your therapeutic or medical decisions on this result, but rather consult your certified medical experts for their recommendations.Visitor reportsVisitor reported usefulNo survey data has been collected yetVisitor reported side effectsNo survey data has been collected yetVisitor reported price estimatesNo survey data has been collected yetVisitor reported frequency of useNo survey data has been collected yetVisitor reported dosesNo survey data has been collected yetVisitor reported time for resultsNo survey data has been collected yetVisitor reported administrationNo survey data has been collected yetVisitor reported ageNo survey data has been collected yetVisitor reviews
The information was verified by Dr. Arunabha Ray, MD Pharmacology |
||||||||||||||||||||
|