Rosiglitazone

How long you have been taking the medicine?
advertisement

Rosiglitazone uses


WARNING: CONGESTIVE HEART FAILURE AND MYOCARDIAL ISCHEMIA

● Thiazolidinediones, including Rosiglitazone, cause or exacerbate congestive heart failure in some patients. After initiation of Rosiglitazone maleate, and after dose increases, observe patients carefully for signs and symptoms of heart failure (including excessive, rapid weight gain, dyspnea, and/or edema). If these signs and symptoms develop, the heart failure should be managed according to current standards of care. Furthermore, discontinuation or dose reduction of rosiglitazone maleate must be considered.

● Rosiglitazone Maleate is not recommended in patients with symptomatic heart failure. Initiation of rosiglitazone maleate in patients with established NYHA Class III or IV heart failure is contraindicated. [See Contraindications (4) and Warnings and Precautions (5.1 ).]

● A meta-analysis of 42 clinical studies (mean duration 6 months; 14,237 total patients), most of which compared rosiglitazone maleate to placebo, showed rosiglitazone maleate to be associated with an increased risk of myocardial ischemic events such as angina or myocardial infarction. Three other studies (mean duration 41 months; 14,067 total patients), comparing rosiglitazone maleate to some other approved oral antidiabetic agents or placebo, have not confirmed or excluded this risk. In their entirety, the available data on the risk of myocardial ischemia are inconclusive.

WARNING:

CONGESTIVE HEART FAILURE AND MYOCARDIAL ISCHEMIA

● Thiazolidinediones, including Rosiglitazone, cause or exacerbate congestive heart failure in some patients (5.1). After initiation of Rosiglitazone maleate, and after dose increases, observe patients carefully for signs and symptoms of heart failure (including excessive, rapid weight gain, dyspnea, and/or edema). If these signs and symptoms develop, the heart failure should be managed according to current standards of care. Furthermore, discontinuation or dose reduction of Rosiglitazone maleate must be considered.

● Rosiglitazone maleate is not recommended in patients with symptomatic heart failure. Initiation of rosiglitazone maleate in patients with established NYHA Class III or IV heart failure is contraindicated. (4, 5.1)

● A meta-analysis of 42 clinical studies (mean duration 6 months; 14,237 total patients), most of which compared rosiglitazone maleate to placebo, showed rosiglitazone maleate to be associated with an increased risk of myocardial ischemic events such as angina or myocardial infarction. Three other studies (mean duration 41 months; 14,067 total patients), comparing rosiglitazone maleate to some other approved oral antidiabetic agents or placebo, have not confirmed or excluded this risk. In their entirety, the available data on the risk of myocardial ischemia are inconclusive. (5.2)

advertisement

1 INDICATIONS AND USAGE

Rosiglitazone tablets is a thiazolidinedione antidiabetic agent indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

Important Limitations of Use:

1.1 Monotherapy and Combination Therapy

Rogislitazone tablets are indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

1.2 Important Limitations of Use

advertisement

2 DOSAGE AND ADMINISTRATION

The management of antidiabetic therapy should be individualized. All patients should start rosiglitazone maleate tablets at the lowest recommended dose. Further increases in the dose of rosiglitazone maleate tablets should be accompanied by careful monitoring for adverse events related to fluid retention .

Rosiglitazone maleate tablets may be administered at a starting dose of 4 mg either as a single daily dose or in 2 divided doses. For patients who respond inadequately following 8 to 12 weeks of treatment, as determined by reduction in fasting plasma glucose (FPG), the dose may be increased to 8 mg daily as monotherapy or in combination with metformin, sulfonylurea, or sulfonylurea plus metformin. Reductions in glycemic parameters by dose and regimen are described under Clinical Studies (14.1) . Rosiglitazone maleate tablets may be taken with or without food.

The total daily dose of rosiglitazone maleate tablets should not exceed 8 mg.

2.1 Monotherapy

The usual starting dose of rosiglitazone maleate tablets is 4 mg administered either as a single dose once daily or in divided doses twice daily. In clinical trials, the 4-mg twice-daily regimen resulted in the greatest reduction in FPG and hemoglobin A1c (HbA1c).

2.2 Combination With Sulfonylurea or Metformin

When rosiglitazone maleate tablets is added to existing therapy, the current dose of the agent(s) can be continued upon initiation of therapy with Rosiglitazone maleate tablets.

Sulfonylurea

When used in combination with sulfonylurea, the usual starting dose of Rosiglitazone maleate is 4 mg administered as either a single dose once daily or in divided doses twice daily. If patients report hypoglycemia, the dose of the sulfonylurea should be decreased.

Metformin

The usual starting dose of Rosiglitazone Maleate in combination with metformin is 4 mg administered as either a single dose once daily or in divided doses twice daily. It is unlikely that the dose of metformin will require adjustment due to hypoglycemia during combination therapy with Rosiglitazone Maleate.

2.3 Combination With Sulfonylurea Plus Metformin

The usual starting dose of rosiglitazone maleate tablets in combination with a sulfonylurea plus metformin is 4 mg administered as either a single dose once daily or divided doses twice daily. If patients report hypoglycemia, the dose of the sulfonylurea should be decreased.

2.4 Specific Patient Populations

Renal Impairment

No dosage adjustment is necessary when Rosiglitazone maleate is used as monotherapy in patients with renal impairment. Since metformin is contraindicated in such patients, concomitant administration of metformin and Rosiglitazone maleate is also contraindicated in patients with renal impairment.

Hepatic Impairment

Liver enzymes should be measured prior to initiating treatment with Rosiglitazone maleate. Therapy with Rosiglitazone maleateshould not be initiated if the patient exhibits clinical evidence of active liver disease or increased serum transaminase levels. After initiation of Rosiglitazone maleate, liver enzymes should be monitored periodically per the clinical judgment of the healthcare professional. [See Warnings and Precautions (5.6) and Clinical Pharmacology (12.3) .]

Pediatric

Data are insufficient to recommend pediatric use of Rosiglitazone maleate .

advertisement

3 DOSAGE FORMS AND STRENGTHS

Oval film-coated tablet contains Rosiglitazone as the maleate as follows::


Oval film-coated tablets in the following strengths::

4 CONTRAINDICATIONS

Initiation of rosiglitazone maleate in patients with established New York Heart Association (NYHA) Class III or IV heart failure is contraindicated .

Initiation of Rosiglitazone maleate in patients with established NYHA Class III or IV heart failure is contraindicated. (4)

5 WARNINGS AND PRECAUTIONS

5.1 Cardiac Failure

Rosiglitazone maleate, like other thiazolidinediones, alone or in combination with other antidiabetic agents, can cause fluid retention, which may exacerbate or lead to heart failure. Patients should be observed for signs and symptoms of heart failure. If these signs and symptoms develop, the heart failure should be managed according to current standards of care. Furthermore, discontinuation or dose reduction of Rosiglitazone must be considered .

Patients with congestive heart failure (CHF) NYHA Class I and II treated with Rosiglitazone maleate have an increased risk of cardiovascular events. A 52-week, double-blind, placebo-controlled echocardiographic study was conducted in 224 patients with type 2 diabetes mellitus and NYHA Class I or II CHF (ejection fraction ≤45%) on background antidiabetic and CHF therapy. An independent committee conducted a blinded evaluation of fluid-related events (including congestive heart failure) and cardiovascular hospitalizations according to predefined criteria (adjudication). Separate from the adjudication, other cardiovascular adverse events were reported by investigators. Although no treatment difference in change from baseline of ejection fractions was observed, more cardiovascular adverse events were observed following treatment with Rosiglitazone maleate compared to placebo during the 52-week study.

Events

Rosiglitazone

maleate tablets

Placebo
N = 110

n (%)

N = 114

n (%)

Adjudicated
Cardiovascular deaths

5 (5%)

4 (4%)
CHF worsening 7 (6%) 4 (4%)
– with overnight hospitalization

5 (5%)

4 (4%)
– without overnight hospitalization 2 (2%) 0 (0%)
New or worsening edema 28 (25%) 10 (9%)
New or worsening dyspnea 29 (26%) 19 (17%)
Increases in CHF medication 36 (33%) 20 (18%)
Cardiovascular hospitalization* 21 (19%) 15 (13%)
Investigator-reported, non-adjudicated
Ischemic adverse events 10 (9%)

5 (4%)

– Myocardial infarction

5 (5%)

2 (2%)
– Angina 6 (5%) 3 (3%)
* Includes hospitalization for any cardiovascular reason.

Initiation of Rosiglitazone maleate in patients with established NYHA Class III or IV heart failure is contraindicated. Rosiglitazone maleate is not recommended in patients with symptomatic heart failure.

Patients experiencing acute coronary syndromes have not been studied in controlled clinical trials. In view of the potential for development of heart failure in patients having an acute coronary event, initiation of rosiglitazone maleate is not recommended for patients experiencing an acute coronary event, and discontinuation of rosiglitazone maleate during this acute phase should be considered.

Patients with NYHA Class III and IV cardiac status (with or without CHF) have not been studied in controlled clinical trials. Rosiglitazone maleate is not recommended in patients with NYHA Class III and IV cardiac status.

5.2 Myocardial Ischemia

Meta-Analysis of Myocardial Ischemia in a Group of 42 Clinical Trials

A meta-analysis was conducted retrospectively to assess cardiovascular adverse events reported across 42 double-blind, randomized, controlled clinical trials.1 These studies had been conducted to assess glucose-lowering efficacy in type 2 diabetes, and prospectively planned adjudication of cardiovascular events had not occurred in the trials. Some trials were placebo-controlled and some used active oral antidiabetic drugs as controls. Placebo-controlled studies included monotherapy trials (Monotherapy with rosiglitazone maleate versus placebo monotherapy) and add-on trials (rosiglitazone maleate or placebo, added to sulfonylurea, metformin, or insulin). Active control studies included monotherapy trials (monotherapy with Rosiglitazone maleate versus sulfonylurea or metformin monotherapy) and add-on trials (rosiglitazone maleate plus sulfonylurea or rosiglitazone maleate plus metformin, versus sulfonylurea plus metformin). A total of 14,237 patients were included (8,604 in treatment groups containing Rosiglitazone maleate, 5,633 in comparator groups), with 4,143 patient-years of exposure to rosiglitazone maleate and 2,675 patient-years of exposure to comparator. Myocardial ischemic events included angina pectoris, angina pectoris aggravated, unstable angina, cardiac arrest, chest pain, coronary artery occlusion, dyspnea, myocardial infarction, coronary thrombosis, myocardial ischemia, coronary artery disease, and coronary artery disorder. In this analysis, an increased risk of myocardial ischemia with rosiglitazone maleate versus pooled comparators was observed (2% rosiglitazone maleate versus 1.5% comparators, odds ratio 1.4, 95% confidence interval [CI] 1.1, 1.8). An increased risk of myocardial ischemic events with rosiglitazone maleate was observed in the placebo-controlled studies, but not in the active-controlled studies.

A greater increased risk of myocardial ischemic events was observed in studies where rosiglitazone maleate was added to insulin (2.8% for rosiglitazone maleate plus insulin versus 1.4% for placebo plus insulin, [OR 2.1, 95% CI 0.9, 5.1]). This increased risk reflects a difference of 3 events per 100 patient-years (95% CI -0.1, 6.3) between treatment groups.

A greater increased risk of myocardial ischemia was also observed in patients who received rosiglitazone maleate and background nitrate therapy. For rosiglitazone maleate (N = 361) versus control (N = 244) in nitrate users, the odds ratio was 2.9 (95% CI 1.4, 5.9), while for non-nitrate users (about 14,000 patients total), the odds ratio was 1.3 (95% CI 0.9, 1.7). This increased risk represents a difference of 12 myocardial ischemic events per 100 patient-years (95% CI 3.3, 21.4). Most of the nitrate users had established coronary heart disease. Among patients with known coronary heart disease who were not on nitrate therapy, an increased risk of myocardial ischemic events for rosiglitazone maleate versus comparator was not demonstrated.

Myocardial Ischemic Adverse Events

Myocardial Ischemic Events in Large Long-Term Prospectice Randomized Controlled Trials of Rosiglitazone maleate

Data from 3 other large, long-term, prospective, randomized, controlled clinical trials of rosiglitazone maleate were assessed separately from the meta-analysis. These 3 trials include a total of 14,067 patients (treatment groups containing rosiglitazone maleate N = 6,311, comparator groups N = 7,756), with patient-year exposure of 21,803 patient-years for Rosiglitazone maleate and 25,998 patient-years for comparator. Duration of follow-up exceeded 3 years in each study. ADOPT (A Diabetes Outcomes Progression Trial) was a 4- to 6-year randomized, active-controlled study in recently diagnosed patients with type 2 diabetes naïve to drug therapy. It was an efficacy and general safety trial that was designed to examine the durability of rosiglitazone maleate as monotherapy (N = 1,456) for glycemic control in type 2 diabetes, with comparator arms of sulfonylurea monotherapy (N = 1,441) and metformin monotherapy (N = 1,454). DREAM (Diabetes Reduction Assessment with Rosiglitazone and Ramipril Medication, published report2) was a 3- to 5-year randomized, placebo-controlled study in patients with impaired glucose tolerance and/or impaired fasting glucose. It had a 2x2 factorial design, intended to evaluate the effect of Rosiglitazone maleate, and separately of ramipril (an angiotensin converting enzyme inhibitor [ACEI]), on progression to overt diabetes. In DREAM, 2,635 patients were in treatment groups containing rosligtazone maleate, and 2,634 were in treatment groups not containing Rosiglitazone maleate. Interim results have been published 3 for RECORD (Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycemia in Diabetes), an ongoing open-label, 6-year cardiovascular outcomes study in patients with type 2 diabetes with an average treatment duration of 3.75 years. RECORD includes patients who have failed metformin or sulfonylurea monotherapy; those who have failed metformin are randomized to receive either add-on rosiglitazone maleate or add-on sulfonylurea, and those who have failed sulfonylurea are randomized to receive either add-on rosiglitazone maleate or add-on metformin. In RECORD, a total of 2,220 patients are receiving add-on Rosiglitazone maleate, and 2,227 patients are on one of the add-on regimens not containing Rosiglitazone maleate.

For these 3 trials, analyses were performed using a composite of major adverse cardiovascular events (myocardial infarction, cardiovascular death, or stroke), referred to hereafter as MACE. This endpoint differed from the meta-analysis’ broad endpoint of myocardial ischemic events, more than half of which were angina. Myocardial infarction included adjudicated fatal and nonfatal myocardial infarction plus sudden death. As shown in Figure 2, the results for the 3 endpoints (MACE, MI, and Total Mortality) were not statistically significantly different between rosiglitazone maleate and comparators.

In preliminary analyses of the DREAM trial, the incidence of cardiovascular events was higher among subjects who received rosiglitazone maleate in combination with ramipril than among subjects who received ramipril alone, as illustrated in Figure 2. This finding was not confirmed in ADOPT and RECORD (active-controlled trials in patients with diabetes) in which 30% and 40% of patients respectively, reported ACE-inhibitor use at baseline.

In their entirety, the available data on the risk of myocardial ischemia are inconclusive. Definitive conclusions regarding this risk await completion of an adequately-designed cardiovascular outcome study.

There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with AVANDIA or any other oral antidiabetic drug.

Figure 2 - Hazard Ratios

5.3 Congestive Heart Failure and Myocardial Ischemia During Coadministration of AVANDIA With Insulin

In studies in which rosiglitazone maleate was added to insulin, Rosiglitazone maleate increased the risk of congestive heart failure and myocardial ischemia. Coadministration of rosiglitazone maleate and insulin is not recommended. [See Indications and Usage (1.2) and Warnings and Precautions (5.1, 5.2) .]

In five, 26-week, controlled, randomized, double-blind trials which were included in the meta-analysis [see Warnings and Precautions (5.2) ], patients with type 2 diabetes mellitus were randomized to coadministration of AVANDIA and insulin (N = 867) or insulin (N = 663). In these 5 trials, rosiglitazone maleate was added to insulin. These trials included patients with long-standing diabetes (median duration of 12 years) and a high prevalence of pre-existing medical conditions, including peripheral neuropathy, retinopathy, ischemic heart disease, vascular disease, and congestive heart failure. The total number of patients with emergent congestive heart failure was 21 (2.4%) and 7 (1.1%) in the rosiglitazone maleate plus insulin and insulin groups, respectively. The total number of patients with emergent myocardial ischemia was 24 (2.8%) and 9 (1.4%) in the rosiglitazone maleate plus insulin and insulin groups, respectively (OR 2.1 [95% CI 0.9, 5.1]). Although the event rate for congestive heart failure and myocardial ischemia was low in the studied population, consistently the event rate was 2-fold or higher with coadministration of rosiglitazone maleate and insulin. These cardiovascular events were noted at both the 4 mg and 8 mg daily doses of Rosiglitazone maleate.


Event*


Rosiglitazone Maleate + Insulin

(n = 867)

n (%)


Insulin

(n = 663)

n (%)

Congestive heart failure 21 (2.4%) 7 (1.1%)
Myocardial ischemia 24 (2.8%)

9 (1.4%)

Composite of cardiovascular death, myocardial infarction, or stroke 10 (1.2%) 5 (0.8%)
Stroke 5 (0.6%) 4 (0.6%)
Myocardial infarction 4 (0.5%)

1 (0.2%)


Cardiovascular death

4 (0.5%) 1 (0.2%)
All deaths 6 (0.7%) 1 (0.2%)
*Events are not exclusive; i.e., a patient with a cardiovascular death due to a myocardial infarction would be counted in 4 event categories (myocardial ischemia; cardiovascular death, myocardial infarction or stroke; myocardial infarction; cardiovascular death).

In a sixth, 24-week, controlled, randomized, double-blind trial of rosiglitaszone maleate and insulin coadministration, insulin was added to AVANDAMET® (rosiglitazone maleate and metformin HCl) (n = 161) and compared to insulin plus placebo (n = 158), after a single-blind 8-week run-in with AVANDAMET. Patients with edema requiring pharmacologic therapy and those with congestive heart failure were excluded at baseline and during the run-in period. In the group receiving AVANDAMET plus insulin, there was one myocardial ischemic event and one sudden death. No myocardial ischemia was observed in the insulin group, and no congestive heart failure was reported in either treatment group.

5.4 Edema

Rosiglitazone maleate should be used with caution in patients with edema. In a clinical study in healthy volunteers who received 8 mg of rosiglitazone maleate once daily for 8 weeks, there was a statistically significant increase in median plasma volume compared to placebo.

Since thiazolidinediones, including Rosiglitazone, can cause fluid retention, which can exacerbate or lead to congestive heart failure, rosiglitazone maleate should be used with caution in patients at risk for heart failure. Patients should be monitored for signs and symptoms of heart failure .

In controlled clinical trials of patients with type 2 diabetes, mild to moderate edema was reported in patients treated with Rosiglitazone maleate, and may be dose related. Patients with ongoing edema were more likely to have adverse events associated with edema if started on combination therapy with insulin and rosiglitazone maleate .

5.5 Weight Gain

Dose-related weight gain was seen with rosiglitazone maleate alone and in combination with other hypoglycemic agents. The mechanism of weight gain is unclear but probably involves a combination of fluid retention and fat accumulation.

In postmarketing experience, there have been reports of unusually rapid increases in weight and increases in excess of that generally observed in clinical trials. Patients who experience such increases should be assessed for fluid accumulation and volume-related events such as excessive edema and congestive heart failure .

Control Group Rosiglitazone

maleate

4 mg


Rosiglitazone

maleate

8 mg

Monotherapy

Duration


Median

(25th, 75th percentile)

Median

(25th, 75th percentile)

Median

(25th, 75th percentile)

26 weeks placebo -0.9 (-2.8, 0.9)

n = 210


1.0 (-0.9, 3.6)

n = 436


3.1 (1.1, 5.8)

n = 439


52 weeks

sulfonylurea 2.0 (0, 4.0)

n = 173

2.0 (-0.6, 4.0)

n = 150

2.6 (0, 5.3)

n = 157

Combination therapy
Sulfonylurea 24-26 weeks

sulfonylurea

0 (-1.0, 1.3)

n = 1,155

2.2 (0.5, 4.0)

n = 613

3.5 (1.4, 5.9)

n = 841

Metformin 26 weeks

metformin

-1.4 (-3.2, 0.2)

n = 175

0.8 (-1.0, 2.6)

n = 100

2.1 (0, 4.3)

n = 184

Insulin

26 weeks

insulin 0.9 (-0.5, 2.7)

n = 162

4.1 (1.4, 6.3)

n = 164

5.4 (3.4, 7.3)

n = 150

Sulfonylurea + metformin 26 weeks sulfonylurea + metformin 0.2 (-1.2, 1.6)

n = 272

2.5 (0.8, 4.6)

n = 275


4.5 (2.4, 7.3)

n = 276


In a 4- to 6-year, monotherapy, comparative trial (ADOPT) in patients recently diagnosed with type 2 diabetes not previously treated with antidiabetic medication , the median weight change (25th, 75th percentiles) from baseline at 4 years was 3.5 kg (0.0, 8.1) for Rosiglitazone maleate, 2.0 kg (-1.0, 4.8) for glyburide, and -2.4 kg (-5.4, 0.5) for metformin.

In a 24-week study in pediatric patients aged 10 to 17 years treated with rosiglitazone maleate 4 to 8 mg daily, a median weight gain of 2.8 kg (25th, 75th percentiles: 0.0, 5.8) was reported.

5.6 Hepatic Effects

Liver enzymes should be measured prior to the initiation of therapy with Rosiglitazone maleate in all patients and periodically thereafter per the clinical judgment of the healthcare professional. Therapy with rosiglitazone maleate should not be initiated in patients with increased baseline liver enzyme levels (ALT >2.5X upper limit of normal). Patients with mildly elevated liver enzymes (ALT levels ≤−2.5X upper limit of normal) at baseline or during therapy with rosiglitazone maleate should be evaluated to determine the cause of the liver enzyme elevation. Initiation of, or continuation of, therapy with rosiglitazone maleate in patients with mild liver enzyme elevations should proceed with caution and include close clinical follow-up, including liver enzyme monitoring, to determine if the liver enzyme elevations resolve or worsen. If at any time ALT levels increase to >3X the upper limit of normal in patients on therapy with Rosiglitazone maleate, liver enzyme levels should be rechecked as soon as possible. If ALT levels remain >3X the upper limit of normal, therapy with rosiglitazone maleate should be discontinued.

If any patient develops symptoms suggesting hepatic dysfunction, which may include unexplained nausea, vomiting, abdominal pain, fatigue, anorexia and/or dark urine, liver enzymes should be checked. The decision whether to continue the patient on therapy with rosiglitazone maleate should be guided by clinical judgment pending laboratory evaluations. If jaundice is observed, drug therapy should be discontinued.

5.7 Macular Edema

Macular edema has been reported in postmarketing experience in some diabetic patients who were taking rosiglitazone maleate or another thiazolidinedione. Some patients presented with blurred vision or decreased visual acuity, but some patients appear to have been diagnosed on routine ophthalmologic examination. Most patients had peripheral edema at the time macular edema was diagnosed. Some patients had improvement in their macular edema after discontinuation of their thiazolidinedione. Patients with diabetes should have regular eye exams by an ophthalmologist, per the Standards of Care of the American Diabetes Association. Additionally, any diabetic who reports any kind of visual symptom should be promptly referred to an ophthalmologist, regardless of the patient’s underlying medications or other physical findings.

5.8 Fractures

In a 4- to 6-year comparative study (ADOPT) of glycemic control with monotherapy in drug-naïve patients recently diagnosed with type 2 diabetes mellitus, an increased incidence of bone fracture was noted in female patients taking Rosiglitazone maleate. Over the 4- to 6-year period, the incidence of bone fracture in females was 9.3% (60/645) for rosiglitazone maleate versus 3.5% (21/605) for glyburide and 5.1% (30/590) for metformin. This increased incidence was noted after the first year of treatment and persisted during the course of the study. The majority of the fractures in the women who received rosiglitazone maleate occurred in the upper arm, hand, and foot. These sites of fracture are different from those usually associated with postmenopausal osteoporosis (e.g., hip or spine). No increase in fracture rates was observed in men treated with Rosiglitazone maleate. The risk of fracture should be considered in the care of patients, especially female patients, treated with Rosiglitazone maleate, and attention given to assessing and maintaining bone health according to current standards of care.

5.9 Hematologic Effects

Decreases in mean hemoglobin and hematocrit occurred in a dose-related fashion in adult patients treated with Rosiglitazone maleate . The observed changes may be related to the increased plasma volume observed with treatment with rosiglitazonemaleate.

5.10 Diabetes and Blood Glucose Control

Patients receiving rosiglitazone maleate in combination with other hypoglycemic agents may be at risk for hypoglycemia, and a reduction in the dose of the concomitant agent may be necessary.

Periodic fasting blood glucose and HbA1c measurements should be performed to monitor therapeutic response.

5.11 Ovulation

Therapy with Rosiglitazone maleate, like other thiazolidinediones, may result in ovulation in some premenopausal anovulatory women. As a result, these patients may be at an increased risk for pregnancy while taking rosiglitazone maleate . Thus, adequate contraception in premenopausal women should be recommended. This possible effect has not been specifically investigated in clinical studies; therefore, the frequency of this occurrence is not known.

Although hormonal imbalance has been seen in preclinical studies , the clinical significance of this finding is not known. If unexpected menstrual dysfunction occurs, the benefits of continued therapy with rosiglitazone maleate should be reviewed.

advertisement

6 ADVERSE REACTIONS

Common adverse reactions reported in clinical trials without regard to causality were upper respiratory tract infection, injury, and headache. (6.1)

To report SUSPECTED ADVERSE REACTIONS, contact West-ward Pharmaceutical Corp, at 732-542-1191 or FDA

at 1-800-FDA-1088 or www.fda.gov/medwatch.

6.1 Clinical Trial Experience

Adult

In clinical trials, approximately 9,900 patients with type 2 diabetes have been treated with Rosiglitazone maleate.

Short-Term Trials of Rosiglitazone Maleate as Monotherapy and in Combination With Other Hypoglycemic Agents

The incidence and types of adverse events reported in short-term clinical trials of rosiglitazone maleate as monotherapy are shown in Table 4.

Preferred Term Rosiglitazone

maleate

Monotherapy


Placebo

Metformin

Sulfonylureas

N = 2,526 N = 601 N = 225 N = 626
% % % %
Upper respiratory tract infection 9.9

8.7

8.9 7.3

Injury

7.6

4.3


7.6


6.1

Headache 5.9

5.0


8.9

5.4

Back pain

4.0 3.8 4.0 5.0

Hyperglycemia

3.9 5.7 4.4 8.1

Fatigue

3.6 5.0 4.0 1.9

Sinusitis

3.2

4.5

5.3 3.0

Diarrhea

2.3 3.3 15.6

3.0

Hypoglycemia 0.6 0.2

1.3

5.9
* Short-term trials ranged from 8 weeks to 1 year.
Includes patients receiving glyburide, gliclazide (N = 91), or glipizide (N = 21).

Overall, the types of adverse reactions without regard to causality reported when rosiglitazone maleate was used in combination with a sulfonylurea or metformin were similar to those during monotherapy with Rosiglitazone maleate.

Events of anemia and edema tended to be reported more frequently at higher doses, and were generally mild to moderate in severity and usually did not require discontinuation of treatment with Rosiglitazone maleate.

In double-blind studies, anemia was reported in 1.9% of patients receiving rosiglitazone maleate as monotherapy compared to 0.7% on placebo, 0.6% on sulfonylureas, and 2.2% on metformin. Reports of anemia were greater in patients treated with a combination of AVANDIA and metformin (7.1%) and with a combination of AVANDIA and a sulfonylurea plus metformin (6.7%) compared to monotherapy with Arosiglitazone maleate or in combination with a sulfonylurea (2.3%). Lower pre-treatment hemoglobin/hematocrit levels in patients enrolled in the metformin combination clinical trials may have contributed to the higher reporting rate of anemia in these studies .

In clinical trials, edema was reported in 4.8% of patients receiving rosiglitazone maleate as monotherapy compared to 1.3% on placebo, 1.0% on sulfonylureas, and 2.2% on metformin. The reporting rate of edema was higher for Rosiglitazone maleate 8 mg in sulfonylurea combinations (12.4%) compared to other combinations, with the exception of insulin. Edema was reported in 14.7% of patients receiving rosiglitazone maleate in the insulin combination trials compared to 5.4% on insulin alone. Reports of new onset or exacerbation of congestive heart failure occurred at rates of 1% for insulin alone, and 2% (4 mg) and 3% (8 mg) for insulin in combination with rosiglitazone maleate .

In controlled combination therapy studies with sulfonylureas, mild to moderate hypoglycemic symptoms, which appear to be dose related, were reported. Few patients were withdrawn for hypoglycemia (<1%) and few episodes of hypoglycemia were considered to be severe (<1%). Hypoglycemia was the most frequently reported adverse event in the fixed-dose insulin combination trials, although few patients withdrew for hypoglycemia (4 of 408 for rosiglitazone maleate plus insulin and 1 of 203 for insulin alone). Rates of hypoglycemia, confirmed by capillary blood glucose concentration ≤50 mg/dL, were 6% for insulin alone and 12% (4 mg) and 14% (8 mg) for insulin in combination with Rosiglitazone maleate.

Long-Term Trial of Rosiglitazone Maleate as Monotherapy

A 4- to 6-year study (ADOPT) compared the use of rosiglitazone maleate (n = 1,456), glyburide (n = 1,441), and metformin (n = 1,454) as monotherapy in patients recently diagnosed with type 2 diabetes who were not previously treated with antidiabetic medication. Table 5 presents adverse reactions without regard to causality; rates are expressed per 100 patient-years (PY) exposure to account for the differences in exposure to study medication across the 3 treatment groups.

In ADOPT, fractures were reported in a greater number of women treated with rosiglitazone maleate (9.3%, 2.7/100 patient-years) compared to glyburide (3.5%, 1.3/100 patient-years) or metformin (5.1%, 1.5/100 patient-years). The majority of the fractures in the women who received Rosiglitazone were reported in the upper arm, hand, and foot. The observed incidence of fractures for male patients was similar among the 3 treatment groups.

Rosiglitazone

Maleate


Glyburide


Metformin


N = 1,456


N = 1,441


N = 1,454


PY = 4,954

PY = 4,244 PY = 4,906
Nasopharyngitis

6.3

6.9 6.6
Back pain

5.1

4.9 5.3
Arthralgia

5.0


4.8

4.2
Hypertension 4.4 6.0 6.1
Upper respiratory tract infection

4.3

5.0

4.7

Hypoglycemia 2.9 13.0

3.4

Diarrhea

2.5


3.2

6.8

Pediatric

Rosiglitazone maleate has been evaluated for safety in a single, active-controlled trial of pediatric patients with type 2 diabetes in which 99 were treated with Rosiglitazone maleate and 101 were treated with metformin. The most common adverse reactions without regard to causality for either rosiglitazone maleate or metformin were headache (17% versus 14%), nausea (4% versus 11%), nasopharyngitis (3% versus 12%), and diarrhea (1% versus 13%). In this study, one case of diabetic ketoacidosis was reported in the metformin group. In addition, there were 3 patients in the Rosiglitazone group who had FPG of ∼300 mg/dL, 2+ ketonuria, and an elevated anion gap.

6.2 Laboratory Abnormalities

Hematologic

Decreases in mean hemoglobin and hematocrit occurred in a dose-related fashion in adult patients treated with AVANDIA. The changes occurred primarily during the first 3 months following initiation of therapy with AVANDIA or following a dose increase in AVANDIA. The time course and magnitude of decreases were similar in patients treated with a combination of AVANDIA and other hypoglycemic agents or monotherapy with AVANDIA. Pre-treatment levels of hemoglobin and hematocrit were lower in patients in metformin combination studies and may have contributed to the higher reporting rate of anemia. In a single study in pediatric patients, decreases in hemoglobin and hematocrit (mean decreases of 0.29 g/dL and 0.95%, respectively) were reported. Small decreases in hemoglobin and hematocrit have also been reported in pediatric patients treated with AVANDIA. White blood cell counts also decreased slightly in adult patients treated with AVANDIA. Decreases in hematologic parameters may be related to increased plasma volume observed with treatment with AVANDIA.

Lipids

Changes in serum lipids have been observed following treatment with rosiglitazone maleate in adults . Small changes in serum lipid parameters were reported in children treated with rosiglitazone maleate for 24 weeks.

Serum Transaminase Levels

In pre-approval clinical studies in 4,598 patients treated with rosiglitazone maleate and in a long-term 4- to 6-year study in 1,456 patients treated with rosiglitazone maleate (4,954 patient-years exposure), there was no evidence of drug-induced hepatotoxicity.

In pre-approval controlled trials, 0.2% of patients treated with rosiglitazone maleate had elevations in ALT >3X the upper limit of normal compared to 0.2% on placebo and 0.5% on active comparators. The ALT elevations in patients treated with rosiglitazone maleate were reversible. Hyperbilirubinemia was found in 0.3% of patients treated with rosiglitazone maleate compared with 0.9% treated with placebo and 1% in patients treated with active comparators. In pre-approval clinical trials, there were no cases of idiosyncratic drug reactions leading to hepatic failure.

In the 4- to 6-year ADOPT trial, patients treated with rosiglitazone maleate (4,954 patient-years exposure), glyburide (4,244 patient-years exposure), or metformin (4,906 patient-years exposure), as monotherapy, had the same rate of ALT increase to >3X upper limit of normal (0.3 per 100 patient-years exposure).

6.3 Postmarketing Experience

In addition to adverse reactions reported from clinical trials, the events described below have been identified during post-approval use of Rosiglitazone maleate. Because these events are reported voluntarily from a population of unknown size, it is not possible to reliably estimate their frequency or to always establish a causal relationship to drug exposure.

In patients receiving thiazolidinedione therapy, serious adverse events with or without a fatal outcome, potentially related to volume expansion (e.g., congestive heart failure, pulmonary edema, and pleural effusions) have been reported .

There are postmarketing reports with rosiglitazone maleate of hepatitis, hepatic enzyme elevations to 3 or more times the upper limit of normal, and hepatic failure with and without fatal outcome, although causality has not been established.

Rash, pruritus, urticaria, angioedema, anaphylactic reaction, and Stevens-Johnson syndrome have been reported rarely.

Reports of new onset or worsening diabetic macular edema with decreased visual acuity have also been received .

7 DRUG INTERACTIONS

Inhibitors of CYP2C8 may increase Rosiglitazone levels; inducers of CYP2C8 (e.g., rifampin) may decrease Rosiglitazone levels. (7.1)

7.1 CYP2C8 Inhibitors and Inducers

An inhibitor of CYP2C8 (e.g., gemfibrozil) may increase the AUC of Rosiglitazone and an inducer of CYP2C8 (e.g., rifampin) may decrease the AUC of Rosiglitazone. Therefore, if an inhibitor or an inducer of CYP2C8 is started or stopped during treatment with Rosiglitazone, changes in diabetes treatment may be needed based upon clinical response.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C.

All pregnancies have a background risk of birth defects, loss, or other adverse outcome regardless of drug exposure. This background risk is increased in pregnancies complicated by hyperglycemia and may be decreased with good metabolic control. It is essential for patients with diabetes or history of gestational diabetes to maintain good metabolic control before conception and throughout pregnancy. Careful monitoring of glucose control is essential in such patients. Most experts recommend that insulin monotherapy be used during pregnancy to maintain blood glucose levels as close to normal as possible.

Human Data

Rosiglitazone has been reported to cross the human placenta and be detectable in fetal tissue. The clinical significance of these findings is unknown. There are no adequate and well-controlled studies in pregnant women. rosiglitazone maleate should not be used during pregnancy.

Animal Studies

There was no effect on implantation or the embryo with Rosiglitazone treatment during early pregnancy in rats, but treatment during mid-late gestation was associated with fetal death and growth retardation in both rats and rabbits. Teratogenicity was not observed at doses up to 3 mg/kg in rats and 100 mg/kg in rabbits. Rosiglitazone caused placental pathology in rats (3 mg/kg/day). Treatment of rats during gestation through lactation reduced litter size, neonatal viability, and postnatal growth, with growth retardation reversible after puberty. For effects on the placenta, embryo/fetus, and offspring, the no-effect dose was 0.2 mg/kg/day in rats and 15 mg/kg/day in rabbits. These no-effect levels are approximately 4 times human AUC at the maximum recommended human daily dose. Rosiglitazone reduced the number of uterine implantations and live offspring when juvenile female rats were treated at 40 mg/kg/day from 27 days of age through to sexual maturity (approximately 68 times human AUC at the maximum recommended daily dose). The no-effect level was 2 mg/kg/day (approximately 4 times human AUC at the maximum recommended daily dose). There was no effect on pre- or post-natal survival or growth.

8.2 Labor and Delivery

The effect of Rosiglitazone on labor and delivery in humans is not known.

8.3 Nursing Mothers

Drug-related material was detected in milk from lactating rats. It is not known whether rosiglitazone maleate is excreted in human milk. Because many drugs are excreted in human milk, rosiglitazone maleate should not be administered to a nursing woman.

8.4 Pediatric Use

After placebo run-in including diet counseling, children with type 2 diabetes mellitus, aged 10 to 17 years and with a baseline mean body mass index of 33 kg/m2, were randomized to treatment with 2 mg twice daily of rosiglitazone maleate (n = 99) or 500 mg twice daily of metformin (n = 101) in a 24-week, double-blind clinical trial. As expected, FPG decreased in patients naïve to diabetes medication (n = 104) and increased in patients withdrawn from prior medication (usually metformin) (n = 90) during the run-in period. After at least 8 weeks of treatment, 49% of patients treated with rosiglitazone maleate and 55% of metformin-treated patients had their dose doubled if FPG >126 mg/dL. For the overall intent-to-treat population, at week 24, the mean change from baseline in HbA1c was -0.14% with rosiglitazone maleate and -0.49% with metformin. There was an insufficient number of patients in this study to establish statistically whether these observed mean treatment effects were similar or different. Treatment effects differed for patients naïve to therapy with antidiabetic drugs and for patients previously treated with antidiabetic therapy (Table 6).

Naïve Patients Previously-Treated Patients

Metformin


Rosiglitazone


Metformin


Rosiglitazone

N = 40 N = 45 N = 43 N = 32

FPG (mg/dL)


Baseline (mean)

170 165 221

205


Change from baseline (mean)

-21 -11 -33 -5
Adjusted treatment difference* (rosiglitazone–metformin) (95% CI) 8

(-15, 30)

21

(-9, 51)

% of patients with ≥30 mg/dL decrease from baseline 43% 27% 44% 28%

HbA1c (%)

Baseline (mean) 8.3 8.2 8.8 8.5

Change from baseline (mean)

-0.7

-0.5

-0.4 0.1

Adjusted treatment difference* (rosiglitazone–metformin) (95% CI)

0.2

(-0.6, 0.9)

0.5

(-0.2, 1.3)

% of patients with ≥0.7% decrease from baseline

63%

52% 54%

31%

* Change from baseline means are least squares means adjusting for baseline HbA1c, gender, and region.

Positive values for the difference favor metformin.


Treatment differences depended on baseline BMI or weight such that the effects of rosiglitazone maleate and metformin appeared more closely comparable among heavier patients. The median weight gain was 2.8 kg with Rosiglitazone and 0.2 kg with metformin . Fifty-four percent of patients treated with Rosiglitazone and 32% of patients treated with metformin gained ≥2 kg, and 33% of patients treated with Rosiglitazone and 7% of patients treated with metformin gained ≥5 kg on study.

Adverse events observed in this study are described in Adverse Reactions (6.1 ).

Figure 3 - Mean HbA1c Over Time in a 24-Week Study of Rosiglitazone Maleate and Metformin in Pediatric Patients - Drug-Naïve Subgroup

8.5 Geriatric Use

Results of the population pharmacokinetic analysis showed that age does not significantly affect the pharmacokinetics of Rosiglitazone . Therefore, no dosage adjustments are required for the elderly. In controlled clinical trials, no overall differences in safety and effectiveness between older (≥65 years) and younger (<65 years) patients were observed.

10 OVERDOSAGE

Limited data are available with regard to overdosage in humans. In clinical studies in volunteers, rosiglitazone maleate has been administered at single oral doses of up to 20 mg and was well-tolerated. In the event of an overdose, appropriate supportive treatment should be initiated as dictated by the patient’s clinical status.

11 DESCRIPTION

Rosiglitazone maleate is an oral antidiabetic agent which acts primarily by increasing iinsulin sensitivity. Rosiglitazone maleate improves glycemic control while reducing circulating insulin levels.

Rosiglitazone maleate is not chemically or functionally related to the sulfonylureas, the biguanides, or the alpha-glucosidase inhibitors.

Chemically, Rosiglitazone maleate is (±)-5-[[4-[2-(methyl-2-pyridinylamino)ethoxy]phenyl]methyl]-2,4-thiazolidinedione, (Z)-2-butenedioate (1:1) with a molecular weight of 473.52 (357.44 free base). The molecule has a single chiral center and is present as a racemate. Due to rapid interconversion, the enantiomers are functionally indistinguishable. The structural formula of Rosiglitazone maleate is:

The molecular formula is C18H19N3O3S-C4H4O4. Rosiglitazone maleate is a white to off-white solid with a melting point range of 122° to 123°C. The pKa values of Rosiglitazone maleate are 6.8 and 6.1. It is readily soluble in ethanol and a buffered aqueous solution with pH of 2.3; solubility decreases with increasing pH in the physiological range. Each film-coated tablet contains Rosiglitazone maleate equivalent to Rosiglitazone, 2 mg, 4 mg or 8 mg, for oral administration.

Inactive ingredients are: Lactose monohydrate, lechithinm, magnesium stearate, microcrystalline cellulose, polyethylene glycol 3350, polyvinyl alcohol, red iron oxide, sodium starch glycolate type A, talc, titanium dioxide. The 4 mg tablet also contains FD&C yellow No, 6 aluminum lake and yellow iron oxide.

Rosiglitazone Maleate Tablets - Structural Formula

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Rosiglitazone, a member of the thiazolidinedione class of antidiabetic agents, improves glycemic control by improving insulin sensitivity. Rosiglitazone is a highly selective and potent agonist for the peroxisome proliferator-activated receptor-gamma. In humans, PPAR receptors are found in key target tissues for insulin action such as adipose tissue, skeletal muscle, and liver. Activation of PPARγ nuclear receptors regulates the transcription of insulin-responsive genes involved in the control of glucose production, transport, and utilization. In addition, PPARγ-responsive genes also participate in the regulation of fatty acid metabolism.

Insulin resistance is a common feature characterizing the pathogenesis of type 2 diabetes. The antidiabetic activity of Rosiglitazone has been demonstrated in animal models of type 2 diabetes in which hyperglycemia and/or impaired glucose tolerance is a consequence of insulin resistance in target tissues. Rosiglitazone reduces blood glucose concentrations and reduces hyperinsulinemia in the ob/ob obese mouse, db/db diabetic mouse, and fa/fa fatty Zucker rat.

In animal models, the antidiabetic activity of Rosiglitazone was shown to be mediated by increased sensitivity to insulin’s action in the liver, muscle, and adipose tissues. Pharmacological studies in animal models indicate that Rosiglitazone inhibits hepatic gluconeogenesis. The expression of the insulin-regulated glucose transporter GLUT-4 was increased in adipose tissue. Rosiglitazone did not induce hypoglycemia in animal models of type 2 diabetes and/or impaired glucose tolerance.

12.2 Pharmacodynamics

Patients with lipid abnormalities were not excluded from clinical trials of Rosiglitazone maleate. In all 26-week controlled trials, across the recommended dose range, Rosiglitazone maleate as monotherapy was associated with increases in total cholesterol, LDL, and HDL and decreases in free fatty acids. These changes were statistically significantly different from placebo or glyburide controls (Table 7).

Increases in LDL occurred primarily during the first 1 to 2 months of therapy with rosiglitazone maleate and LDL levels remained elevated above baseline throughout the trials. In contrast, HDL continued to rise over time. As a result, the LDL/HDL ratio peaked after 2 months of therapy and then appeared to decrease over time. Because of the temporal nature of lipid changes, the 52-week glyburide-controlled study is most pertinent to assess long-term effects on lipids. At baseline, week 26, and week 52, mean LDL/HDL ratios were 3.1, 3.2, and 3.0, respectively, for Rosiglitazone maleate 4 mg twice daily. The corresponding values for glyburide were 3.2, 3.1, and 2.9. The differences in change from baseline between rosiglitazone maleate and glyburide at week 52 were statistically significant.

The pattern of LDL and HDL changes following therapy with rosiglitazone maleate in combination with other hypoglycemic agents were generally similar to those seen with rosiglitazone maleate in monotherapy.

The changes in triglycerides during therapy with Rosiglitazone maleate were variable and were generally not statistically different from placebo or glyburide controls.


Placebo-Controlled Studies

Week 26

Glyburide-Controlled Study

Week 26 and Week 52


Placebo


Rosiglitazone

maleate


Glyburide Titration


Rosiglitazone

maleate 8 mg


4 mg daily*


8 mg daily*


Wk 26


Wk 52


Wk 26


Wk 52


Free fatty acids

N

207


428

436

181


168


166


145


Baseline (mean)


18.1

17.5 17.9 26.4 26.4 26.9 26.6

% Change from baseline (mean)

+0.2% -7.8% -14.7% -2.4% -4.7% -20.8% -21.5%
LDL
N 190 400 374

175

160

161

133
Baseline (mean) 123.7 126.8 125.3

142.7

141.9 142.1

142.1


% Change from baseline (mean)


+4.8%


+14.1%

+18.6% -0.9% -0.5% +11.9% +12.1%

HDL


N

208 429 436

184

170 170 145

Baseline (mean)

44.1 44.4 43.0 47.2 47.7 48.4 48.3

% Change from baseline (mean)

+8.0%

+11.4%

+14.2% +4.3% +8.7% +14.0% +18.5%
* Once daily and twice daily dosing groups were combined.

12.3 Pharmacokinetics

Maximum plasma concentration and the area under the curve (AUC) of Rosiglitazone increase in a dose-proportional manner over the therapeutic dose range (Table 8). The elimination half-life is 3 to 4 hours and is independent of dose.

Parameter

1 mg

Fasting

2 mg

Fasting


8 mg

Fasting


8 mg

Fed


AUC0-inf

[ng-hr/mL]


358

(112)


733

(184)


2,971

(730)


2,890

(795)

Cmax

[ng/mL]


76

(13)


156

(42)


598

(117)


432

(92)

Half-life

[hr]


3.16

(0.72)


3.15

(0.39)


3.37

(0.63)


3.59

(0.70)

CL/F*

[L/hr]


3.03

(0.87)


2.89

(0.71)


2.85

(0.69)


2.97

(0.81)

* CL/F = Oral clearance.

Absorption

The absolute bioavailability of Rosiglitazone is 99%. Peak plasma concentrations are observed about 1 hour after dosing. Administration of Rosiglitazone with food resulted in no change in overall exposure (AUC), but there was an approximately 28% decrease in Cmax and a delay in Tmax (1.75 hours). These changes are not likely to be clinically significant; therefore, rosiglitazone maleate may be administered with or without food.

Distribution

The mean oral volume of distribution (Vss/F) of Rosiglitazone is approximately 17.6 (30%) liters, based on a population pharmacokinetic analysis. Rosiglitazone is approximately 99.8% bound to plasma proteins, primarily albumin.

Metabolism

Rosiglitazone is extensively metabolized with no unchanged drug excreted in the urine. The major routes of metabolism were N-demethylation and hydroxylation, followed by conjugation with sulfate and glucuronic acid. All the circulating metabolites are considerably less potent than parent and, therefore, are not expected to contribute to the insulin-sensitizing activity of Rosiglitazone.

In vitro data demonstrate that Rosiglitazone is predominantly metabolized by Cytochrome P450 (CYP) isoenzyme 2C8, with CYP2C9 contributing as a minor pathway.

Excretion

Following oral or intravenous administration of [14C]rosiglitazone maleate, approximately 64% and 23% of the dose was eliminated in the urine and in the feces, respectively. The plasma half-life of [14C]related material ranged from 103 to 158 hours.

Population Pharmacokinetics in Patients with Type 2 Diabetes

Population pharmacokinetic analyses from 3 large clinical trials including 642 men and 405 women with type 2 diabetes showed that the pharmacokinetics of Rosiglitazone are not influenced by age, race, smoking, or alcohol consumption. Both oral clearance (CL/F) and oral steady-state volume of distribution (Vss/F) were shown to increase with increases in body weight. Over the weight range observed in these analyses (50 to 150 kg), the range of predicted CL/F and Vss/F values varied by <1.7-fold and<2.3-fold, respectively. Additionally, Rosiglitazone CL/F was shown to be influenced by both weight and gender, being lower (about 15%) in female patients.

Special Populations

Geriatric

Results of the population pharmacokinetic analysis showed that age does not significantly affect the pharmacokinetics of Rosiglitazone.

Gender

Results of the population pharmacokinetics analysis showed that the mean oral clearance of Rosiglitazone in female patients (n = 405) was approximately 6% lower compared to male patients of the same body weight (n = 642).

As monotherapy and in combination with metformin, rosiglitazone maleate improved glycemic control in both males and females. In metformin combination studies, efficacy was demonstrated with no gender differences in glycemic response.

In monotherapy studies, a greater therapeutic response was observed in females; however, in more obese patients, gender differences were less evident. For a given body mass index (BMI), females tend to have a greater fat mass than males. Since the molecular target PPARγ is expressed in adipose tissues, this differentiating characteristic may account, at least in part, for the greater response to Rosiglitazone maleate in females. Since therapy should be individualized, no dose adjustments are necessary based on gender alone.

Hepatic Impairment

Unbound oral clearance of Rosiglitazone was significantly lower in patients with moderate to severe liver disease compared to healthy subjects. As a result, unbound Cmax and AUC0-inf were increased 2- and 3-fold, respectively. Elimination half-life for Rosiglitazone was about 2 hours longer in patients with liver disease, compared to healthy subjects.

Therapy with rosiglitazone maleate should not be initiated if the patient exhibits clinical evidence of active liver disease or increased serum transaminase levels (ALT >2.5X upper limit of normal) at baseline .

Pediatric

Pharmacokinetic parameters of Rosiglitazone in pediatric patients were established using a population pharmacokinetic analysis with sparse data from 96 pediatric patients in a single pediatric clinical trial including 33 males and 63 females with ages ranging from 10 to 17 years (weights ranging from 35 to 178.3 kg). Population mean CL/F and V/F of Rosiglitazone were 3.15 L/hr and 13.5 L, respectively. These estimates of CL/F and V/F were consistent with the typical parameter estimates from a prior adult population analysis.

Renal Impairment

There are no clinically relevant differences in the pharmacokinetics of Rosiglitazone in patients with mild to severe renal impairment or in hemodialysis-dependent patients compared to subjects with normal renal function. No dosage adjustment is therefore required in such patients receiving Rosiglitazone maleate. Since metformin is contraindicated in patients with renal impairment, coadministration of metformin with rosiglitazone maleate is contraindicated in these patients.

Race

Results of a population pharmacokinetic analysis including subjects of Caucasian, black, and other ethnic origins indicate that race has no influence on the pharmacokinetics of Rosiglitazone.

12.4 Drug-Drug Interactions

Drugs That Inhibit, Induce, or are Metabolized by Cytochrome P450

In vitro drug metabolism studies suggest that Rosiglitazone does not inhibit any of the major P450 enzymes at clinically relevant concentrations. In vitro data demonstrate that Rosiglitazone is predominantly metabolized by CYP2C8, and to a lesser extent, 2C9. Rosiglitazone maleate was shown to have no clinically relevant effect on the pharmacokinetics of nifedipine and oral contraceptives (ethinyl estradiol and norethindrone), which are predominantly metabolized by CYP3A4.

Gemfibrozil

Concomitant administration of gemfibrozil (600 mg twice daily), an inhibitor of CYP2C8, and Rosiglitazone (4 mg once daily) for 7 days increased Rosiglitazone AUC by 127%, compared to the administration of Rosiglitazone (4 mg once daily) alone. Given the potential for dose-related adverse events with Rosiglitazone, a decrease in the dose of Rosiglitazone may be needed when gemfibrozil is introduced .

Rifampin

Rifampin administration, an inducer of CYP2C8, for 6 days is reported to decrease Rosiglitazone AUC by 66%, compared to the administration of Rosiglitazone (8 mg) alone . 4

Glyburide

Rosiglitazone maleate (2 mg twice daily) taken concomitantly with glyburide (3.75 to 10 mg/day) for 7 days did not alter the mean steady-state 24-hour plasma glucose concentrations in diabetic patients stabilized on glyburide therapy. Repeat doses of Rosiglitazone maleate(8 mg once daily) for 8 days in healthy adult Caucasian subjects caused a decrease in glyburide AUC and Cmax of approximately 30%. In Japanese subjects, glyburide AUC and Cmax slightly increased following coadministration of Rosiglitazone maleate.

Glimepiride

Single oral doses of glimepiride in 14 healthy adult subjects had no clinically significant effect on the steady-state pharmacokinetics of Rosiglitazone maleate. No clinically significant reductions in glimepiride AUC and Cmax were observed after repeat doses of rosiglitazone maleate for 8 days in healthy adult subjects.

Metformin

Concurrent administration of rosiglitazone maleate (2 mg twice daily) and metformin (500 mg twice daily) in healthy volunteers for 4 days had no effect on the steady-state pharmacokinetics of either metformin or Rosiglitazone.

Acarbose

Coadministration of acarbose for 7 days in healthy volunteers had no clinically relevant effect on the pharmacokinetics of a single oral dose of Rosiglitazone maleate.

Digoxin

Repeat oral dosing of rosiglitazone maleate (8 mg once daily) for 14 days did not alter the steady-state pharmacokinetics of digoxin (0.375 mg once daily) in healthy volunteers.

Warfarin

Repeat dosing with rosigllitazone maleate had no clinically relevant effect on the steady-state pharmacokinetics of warfarin enantiomers.

Ethanol

A single administration of a moderate amount of alcohol did not increase the risk of acute hypoglycemia in type 2 diabetes mellitus patients treated with Rosiglitazone maleate.

Ranitidine

Pretreatment with ranitidine (150 mg twice daily for 4 days) did not alter the pharmacokinetics of either single oral or intravenous doses of Rosiglitazone in healthy volunteers. These results suggest that the absorption of oral Rosiglitazone is not altered in conditions accompanied by increases in gastrointestinal pH.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

A 2-year carcinogenicity study was conducted in Charles River CD-1 mice at doses of 0.4, 1.5, and 6 mg/kg/day in the diet. Sprague-Dawley rats were dosed for 2 years by oral gavage at doses of 0.05, 0.3, and 2 mg/kg/day (highest dose equivalent to approximately 10 and 20 times human AUC at the maximum recommended human daily dose for male and female rats, respectively).

Rosiglitazone was not carcinogenic in the mouse. There was an increase in incidence of adipose hyperplasia in the mouse at doses ≥1.5 mg/kg/day (approximately 2 times human AUC at the maximum recommended human daily dose). In rats, there was a significant increase in the incidence of benign adipose tissue tumors (lipomas) at doses ≥0.3 mg/kg/day (approximately 2 times human AUC at the maximum recommended human daily dose). These proliferative changes in both species are considered due to the persistent pharmacological overstimulation of adipose tissue.

Mutagenesis

Rosiglitazone was not mutagenic or clastogenic in the in vitro bacterial assays for gene mutation, the in vitro chromosome aberration test in human lymphocytes, the in vivo mouse micronucleus test, and the in vivo/in vitro rat UDS assay. There was a small (about 2-fold) increase in mutation in the in vitro mouse lymphoma assay in the presence of metabolic activation.

Impairment of Fertility

Rosiglitazone had no effects on mating or fertility of male rats given up to 40 mg/kg/day. Rosiglitazone altered estrous cyclicity (2 mg/kg/day) and reduced fertility (40 mg/kg/day) of female rats in association with lower plasma levels of progesterone and estradiol (approximately 20 and 200 times human AUC at the maximum recommended human daily dose, respectively). No such effects were noted at 0.2 mg/kg/day (approximately 3 times human AUC at the maximum recommended human daily dose). In juvenile rats dosed from 27 days of age through to sexual maturity (at up to 40 mg/kg/day), there was no effect on male reproductive performance, or on estrous cyclicity, mating performance or pregnancy incidence in females (approximately 68 times human AUC at the maximum recommended human daily dose). In monkeys, Rosiglitazone (0.6 and 4.6 mg/kg/day; approximately 3 and 15 times human AUC at the maximum recommended human daily dose, respectively) diminished the follicular phase rise in serum estradiol with consequential reduction in the luteinizing hormone surge, lower luteal phase progesterone levels, and amenorrhea. The mechanism for these effects appears to be direct inhibition of ovarian steroidogenesis.

13.2 Animal Toxicology

Heart weights were increased in mice (3 mg/kg/day), rats (5 mg/kg/day), and dogs (2 mg/kg/day) with Rosiglitazone treatments (approximately 5, 22, and 2 times human AUC at the maximum recommended human daily dose, respectively). Effects in juvenile rats were consistent with those seen in adults. Morphometric measurement indicated that there was hypertrophy in cardiac ventricular tissues, which may be due to increased heart work as a result of plasma volume expansion.

14 CLINICAL STUDIES

14.1 Monotherapy

Short Term Clinical Studies

A total of 2,315 patients with type 2 diabetes, previously treated with diet alone or antidiabetic medication, were treated with rosilitazone maleate as monotherapy in 6 double-blind studies, which included two 26-week placebo-controlled studies, one 52-week glyburide-controlled study, and 3 placebo-controlled dose-ranging studies of 8 to 12 weeks duration. Previous antidiabetic medication(s) were withdrawn and patients entered a 2 to 4 week placebo run-in period prior to randomization.

Two 26-week, double-blind, placebo-controlled trials, in patients with type 2 diabetes (n = 1,401) with inadequate glycemic control (mean baseline FPG approximately 228 mg/dL [101 to 425 mg/dL] and mean baseline HbA1c 8.9% [5.2% to 16.2%]), were conducted. Treatment with AVANDIA produced statistically significant improvements in FPG and HbA1c compared to baseline and relative to placebo. Data from one of these studies are summarized in Table 9.


Placebo

Rosiglitazone maleate

Rosiglitazone maleate

4 mg once daily

2 mg twice daily

8 mg once daily 4 mg twice daily

N = 173


N = 180

N = 186 N = 181 N = 187

FPG (mg/dL)

Baseline (mean) 225 229 225 228 228
Change from baseline (mean)

8


-25

-35 -42 -55
Difference from placebo (adjusted mean)

-31*

-43* -49* -62*
% of patients with ≥30 mg/dL decrease from baseline

19%

45% 54% 58% 70%

HbA1c (%)


Baseline (mean)

8.9 8.9 8.9 8.9

9.0


Change from baseline (mean)

0.8 0.0 -0.1 -0.3 -0.7
Difference from placebo (adjusted mean) -0.8* -0.9* -1.1* -1.5*

% of patients with ≥0.7% decrease from baseline

9% 28% 29% 39%

54%


*p<0.0001 compared to placebo.


When administered at the same total daily dose, rosiglitazone maleate was generally more effective in reducing FPG and HbA1c when administered in divided doses twice daily compared to once daily doses. However, for HbA1c, the difference between the 4 mg once daily and 2 mg twice daily doses was not statistically significant.

Long Term Clinical Studies

Long-term maintenance of effect was evaluated in a 52-week, double-blind, glyburide-controlled trial in patients with type 2 diabetes. Patients were randomized to treatment with Rosiglitazone maleate 2 mg twice daily (N = 195) or Rosiglitazone maleate 4 mg twice daily (N = 189) or glyburide (N = 202) for 52 weeks. Patients receiving glyburide were given an initial dosage of either 2.5 mg/day or 5.0 mg/day. The dosage was then titrated in 2.5 mg/day increments over the next 12 weeks, to a maximum dosage of 15.0 mg/day in order to optimize glycemic control. Thereafter the glyburide dose was kept constant.

The median titrated dose of glyburide was 7.5 mg. All treatments resulted in a statistically significant improvement in glycemic control from baseline (Figure 4 and Figure 5). At the end of week 52, the reduction from baseline in FPG and HbA1c was -40.8 mg/dL and -0.53% with Rosiglitazone maleate 4 mg twice daily; -25.4 mg/dL and -0.27% with Rosiglitazone maleate 2 mg twice daily; and -30.0 mg/dL and -0.72% with glyburide. For HbA1c, the difference between Rosiglitazone maleate 4 mg twice daily and glyburide was not statistically significant at week 52. The initial fall in FPG with glyburide was greater than with Rosiglitazone maleate; however, this effect was less durable over time. The improvement in glycemic control seen with Rosiglitazone maleate 4 mg twice daily at week 26 was maintained through week 52 of the study.



Hypoglycemia was reported in 12.1% of glyburide-treated patients versus 0.5% (2 mg twice daily) and 1.6% (4 mg twice daily) of patients treated with Rosiglitazone maleate. The improvements in glycemic control were associated with a mean weight gain of 1.75 kg and 2.95 kg for patients treated with 2 mg and 4 mg twice daily of Rosiglitazone maleate, respectively, versus 1.9 kg in glyburide-treated patients. In patients treated with Rosiglitazone maleate, C-peptide, insulin, pro-insulin, and pro-insulin split products were significantly reduced in a dose-ordered fashion, compared to an increase in the glyburide-treated patients.

A Diabetes Outcome Progression Trial (ADOPT) was a multicenter, double-blind, controlled trial (n = 4,351) conducted over 4 to 6 years to compare the safety and efficacy of Rosiglitazone maleate, metformin, and glyburide monotherapy in patients recently diagnosed with type 2 diabetes mellitus (≤3 years) inadequately controlled with diet and exercise. The mean age of patients in this trial was 57 years and the majority of patients (83%) had no known history of cardiovascular disease. The mean baseline FPG and HbA1c were 152 mg/dL and 7.4%, respectively. Patients were randomized to receive either Rosiglitazone maleate 4 mg once daily, glyburide 2.5 mg once daily, or metformin 500 mg once daily, and doses were titrated to optimal glycemic control up to a maximum of 4 mg twice daily for Rosiglitazone maleate, 7.5 mg twice daily for glyburide, and 1,000 mg twice daily for metformin. The primary efficacy outcome was time to consecutive FPG >180 mg/dL after at least 6 weeks of treatment at the maximum tolerated dose of study medication or time to inadequate glycemic control, as determined by an independent adjudication committee.

The cumulative incidence of the primary efficacy outcome at 5 years was 15% with Rosiglitazone maleate, 21% with metformin, and 34% with glyburide (hazard ratio 0.68 [95% CI 0.55, 0.85] versus metformin, HR 0.37 [95% CI 0.30, 0.45] versus glyburide).

Cardiovascular and adverse event data (including effects on body weight and bone fracture) from ADOPT for Rosiglitazone maleate, metformin, and glyburide are described in Warnings and Precautions (5.2, 5.5, and 5.8) and Adverse Reactions (6.1), respectively. As with all medications, efficacy results must be considered together with safety information to assess the potential benefit and risk for an individual patient.

Figure 4 - Chart/Graph Figure 5 - Graph

14.2 Combination With Metformin or Sulfonylurea

The addition of Rosiglitazone maleate to either metformin or sulfonylurea resulted in significant reductions in hyperglycemia compared to either of these agents alone. These results are consistent with an additive effect on glycemic control when rosiglitazone maleate is used as combination therapy.

Combination with Metformin

A total of 670 patients with type 2 diabetes participated in two 26-week, randomized, double-blind, placebo/active-controlled studies designed to assess the efficacy of Rosiglitazone maleate in combination with metformin. Rosiglitazone maleate, administered in either once daily or twice daily dosing regimens, was added to the therapy of patients who were inadequately controlled on a maximum dose of metformin.

In one study, patients inadequately controlled on 2.5 grams/day of metformin (mean baseline FPG 216 mg/dL and mean baseline HbA1c 8.8%) were randomized to receive 4 mg of Rosiglitazone maleate once daily, 8 mg of Rosiglitazone maleate once daily, or placebo in addition to metformin. A statistically significant improvement in FPG and HbA1c was observed in patients treated with the combinations of metformin and 4 mg of Rosiglitazone maleate once daily and 8 mg of Rosiglitazone maleate once daily, versus patients continued on metformin alone (Table 10).

Metformin

Rosiglitazone Maleate

4 mg once daily + metformin

Rosiglitazone Maleate

8 mg once daily + metformin


N = 113


N = 116

N = 110

FPG (mg/dL)


Baseline (mean)


214


215


220


Change from baseline (mean)


6

-33

-48

Difference from metformin alone (adjusted mean)


-40*

-53*


% of patients with ≥30 mg/dL decrease from baseline


20%

45%

61%


HbA1c (%)

Baseline (mean) 8.6 8.9 8.9

Change from baseline (mean)


0.5

-0.6 -0.8
Difference from metformin alone (adjusted mean) -1.0* -1.2*

% of patients with ≥0.7% decrease from baseline


11%

45%

52%


* p<0.0001 compared to metformin.


In a second 26-week study, patients with type 2 diabetes inadequately controlled on 2.5 grams/day of metformin who were randomized to receive the combination of Rosiglitazone maleate 4 mg twice daily and metformin (N = 105) showed a statistically significant improvement in glycemic control with a mean treatment effect for FPG of -56 mg/dL and a mean treatment effect for HbA1c of -0.8% over metformin alone. The combination of metformin and Rosiglitazone maleate resulted in lower levels of FPG and HbA1c than either agent alone.

Patients who were inadequately controlled on a maximum dose (2.5 grams/day) of metformin and who were switched to monotherapy with Rosiglitazone maleate demonstrated loss of glycemic control, as evidenced by increases in FPG and HbA1c. In this group, increases in LDL and VLDL were also seen.

Combination with Sulfonylurea

A total of 3,457 patients with type 2 diabetes participated in ten 24- to 26-week randomized, double-blind, placebo/active-controlled studies and one 2-year double-blind, active-controlled study in elderly patients designed to assess the efficacy and safety of Rosiglitazone maleate in combination with a sulfonylurea. Rosiglitazone maleate 2 mg, 4 mg, or 8 mg daily, was administered either once daily (3 studies) or in divided doses twice daily (7 studies), to patients inadequately controlled on a submaximal or maximal dose of sulfonylurea.

In these studies, the combination of Rosiglitazone maleate 4 mg or 8 mg daily (administered as single or twice daily divided doses) and a sulfonylurea significantly reduced FPG and HbA1c compared to placebo plus sulfonylurea or further up-titrationof the sulfonylurea. Table 11 shows pooled data for 8 studies in which Rosiglitazone maleate added to sulfonylurea was compared to placebo plus sulfonylurea.

Twice Daily Divided Dosing

(5 Studies)


Sulfonylurea


Rosiglitazone Maleate

2 mg twice daily + sulfonylurea

Sulfonylurea

Rosiglitazone M

4 mg twice daily + sulfonylurea


N = 397

N = 497 N = 248 N = 346

FPG (mg/dL)


Baseline (mean)


204


198


188


187


Change from baseline (mean)


11


-29


8


-43

Difference from sulfonylurea alone (adjusted mean)


-42*



-53*

% of patients with ≥30 mg/dL decrease from baseline

17%

49%

15%


61%

HbA1c (%)
Baseline (mean) 9.4 9.5 9.3

9.6

Change from baseline (mean)

0.2


-1.0

0.0 -1.6

Difference from sulfonylurea alone (adjusted mean)



-1.1*

-1.4*

% of patients with ≥0.7% decrease from baseline 21% 60%

23%

75%
Once Daily Dosing

(3 Studies)


Sulfonylurea


Rosiglitazone maleate

4 mg once daily + sulfonylurea


Sulfonylurea


Rosiglitazone maleate

8 mg once daily + sulfonylurea


N = 172

N = 172

N = 173


N = 176


FPG (mg/dL)


Baseline (mean)


198


206

188

192


Change from baseline (mean)

17

-25

17 -43
Difference from sulfonylurea alone (adjusted mean)


-47*

-66*

% of patients with ≥30 mg/dL decrease from baseline

17%

48% 19% 55%

HbA1c (%)

Baseline (mean) 8.6 8.8 8.9

8.9

Change from baseline (mean) 0.4 -0.5 0.1 -1.2

Difference from sulfonylurea alone (adjusted mean)




-0.9*




-1.4*


% of patients with ≥0.7% decrease from baseline

11% 36% 20% 68%
* p<0.0001 compared to sulfonylurea alone.

One of the 24- to 26-week studies included patients who were inadequately controlled on maximal doses of glyburide and switched to 4 mg of Rosiglitazone maleate daily as monotherapy; in this group, loss of glycemic control was demonstrated, as evidenced by increases in FPG and HbA1c.

In a 2-year double-blind study, elderly patients (aged 59 to 89 years) on half-maximal sulfonylurea (glipizide 10 mg twice daily) were randomized to the addition of Rosiglitazone maleate (n = 115, 4 mg once daily to 8 mg as needed) or to continued up-titration of glipizide (n = 110), to a maximum of 20 mg twice daily. Mean baseline FPG and HbA1c were 157 mg/dL and 7.72%, respectively, for the Rosiglitazone maleate plus glipizide arm and 159 mg/dL and 7.65%, respectively, for the glipizide up-titration arm. Loss of glycemic control (FPG ≥180 mg/dL) occurred in a significantly lower proportion of patients (2%) on Rosiglitazone maleate plus glipizide compared to patients in the glipizide up-titration arm (28.7%). About 78% of the patients on combination therapy completed the 2 years of therapy while only 51% completed on glipizide monotherapy. The effect of combination therapy on FPG and HbA1c was durable over the 2-year study period, with patients achieving a mean of 132 mg/dL for FPG and a mean of 6.98% for HbA1c compared to no change on the glipizide arm.

14.3 Combination With Sulfonylurea Plus Metformin

In two 24- to 26-week, double-blind, placebo-controlled, studies designed to assess the efficacy and safety of rosiglitazone maleate in combination with sulfonylurea plus metformin, rosiglitazone maleate 4 mg or 8 mg daily, was administered in divided doses twice daily, to patients inadequately controlled on submaximal (10 mg) and maximal (20 mg) doses of glyburide and maximal dose of metformin (2 g/day). A statistically significant improvement in FPG and HbA1c was observed in patients treated with the combinations of sulfonylurea plus metformin and 4 mg of rosiglitazone maleate and 8 mg of Rosiglitazone maleate versus patients continued on sulfonylurea plus metformin, as shown in Table 12.


Sulfonylurea + metformin


Rosiglitazone

maleate

2 mg twice daily + sulfonylurea + metformin


Rosiglitazone

maleate

4 mg twice daily + sulfonylurea + metformin

N = 273 N = 276 N = 277
FPG (mg/dL)
Baseline (mean)

189


190


192


Change from baseline (mean)

14 -19

-40


Difference from sulfonylurea plus metformin (adjusted mean)




-30*


-52*


% of patients with ≥30 mg/dL decrease from baseline


16%

46%

62%


HbA1c (%)

Baseline (mean) 8.7 8.6 8.7

Change from baseline (mean)

0.2 -0.4 -0.9

Difference from sulfonylurea plus metformin (adjusted mean)




-0.6*


-1.1*


% of patients with ≥0.7% decrease from baseline

16% 39% 63%

* p<0.0001 compared to placebo.

15 REFERENCES

16 HOW SUPPLIED/STORAGE AND HANDLING

Tablets: each oval film-coated tablet contains Rosiglitazone as the maleate as follows:

2 mg - Pink oval film coated tablets, engraved with W41; supplied in bottles of 30, 100 and 500

4 mg - Orange oval film coated tablets, engraved with W42; supplied in bottles of 30, 100 and 500.

8 mg - Brick-red oval film coated tablets, engraved with W43, supplied in bottles of 30, 100 and 500.

Store at 25°C (77°F); excursions 15° to 30°C (59° to 86°F). Dispense in a tight, light-resistant container.

17 PATIENT COUNSELING INFORMATION

17.1 Patient Advice

Patients should be informed of the following:

FDA-Approved Medication Guide

ADVANDAMET is registered trademark of GlaxoSmithKline.

MEDICATION GUIDE

Rosiglitazone Maleate Tablets

Read this Medication Guide carefully before you start taking rosiglitazone maleate and each time you get a refill. There may be new information. This information Rosiglitazone maleate, ask your doctor or pharmacist.

What is the most important information I should know about Rosiglitazone maleate tablets?

Rosiglitazone maleate tablets can cause serious side effects, including:

New or worse heart failure


Call your doctor right away if you have any of the following:


Other heart problems

Rosiglitazone maleate may increase the risk of heart problems related to reduced blood flow to the heart. These include possible increases in the risk of heart-related chest pain (angina) or "heart attack" (myocardial infarction). This risk seems to be higher in patients who took Rosiglitazone maleate with insulin or with nitrate medicines. Most people who take insulin or nitrate medicines should not also take Rosiglitazone maleate.


Rosiglitazone maleate can have other serious side effects. Be sure to read the section below “What are possible side effects of Rosiglitazone maleate?”.

What is Rosiglitazone maleate?

Rosiglitazone maleate is a prescription medicine used with diet and exercise to treat adults with type 2 (“adult-onset” or “non-insulin dependent”) diabetes mellitus (“high blood sugar”). Rosiglitazone maleate helps to control high blood sugar. Rosiglitazone maleate may be used alone or with other diabetes medicines. Rosiglitazone maleate can help your body respond better to insulin made in your body. Rosiglitazone maleate does not cause your body to make more insulin. Rosiglitazone maleate can also cause serious side effects.


Who should not take Rosiglitazone maleate?

Many patients with heart failure should not start taking Rosiglitazone maleate. See “What should I tell my doctor before taking Rosiglitazone maleate?”.

What should I tell my doctor before taking Rosiglitazone maleate?

Before starting Rosiglitazone maleate, ask your doctor about what the choices are for diabetes medicines, and what the expected benefits and possible risks are for you in particular.

Before taking Rosiglitazone maleate, tell your doctor about all your medical conditions, including if you:


Tell your doctor about all the medicines you take including prescription and non-prescription medicines,vitamins or herbal supplements. Rosiglitazone maleate and certain other medicines can affect each other and lead to serious side effects including high or low blood sugar, or heart problems. Especially tell your doctor if you take:


Know the medicines you take. Keep a list of your medicines and show it to your doctor and pharmacist before you start a new medicine. They will tell you if it is alright to take Rosiglitazone maleate with other medicines.

How should I take Rosiglitazone maleate?


What are possible side effects of Rosiglitazone maleate?

Rosiglitazone maleate can cause serious side effects including:


The most common side effects of Rosiglitazone maleate reported in clinical trials included cold-like symptoms and headache.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How should I store Rosiglitazone maleate?


General information about Rosiglitazone maleate

Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use Rosiglitazone maleate for a condition for which it was not prescribed. Do not give Rosiglitazone maleate to other people, even if they have the same symptoms you have. It may harm them.

This Medication Guide summarizes important information about Rosiglitazone maleate tablets. If you would like more information about Rosiglitazone maleate tablets that is written for helathcare professionals. You can also find out more about Rosiglitazone maleate tablets by calling West-ward Pharmaceutical Corp at 732-542-1191.

What are the ingredients in Rosiglitazone maleate?

Active Ingredient: Rosiglitazone maleate.

Inactive Ingredients:Lactose monohydrate, lechithin, magnesium stearate, microcrystalline cellulose, polyethylene glycol 3350, polyvinyl alcohol, red iron oxide, sodium starch glycolate type A, talc, titanium dioxide. The 4 mg tablet also contains FD&C yellow No. 6 aluminum lake and yellow iron oxide.

Always check to make sure that the medicine you are taking is the correct one. Rosiglitazone maleate tablets look like this:

2 mg – Pink oval film coated tablets, engraved with W41.

4 mg – Orange oval film coated tablets, engraved with W42.

8 mg – Brick red oval film coated tablets, engraved with W43.

REZULIN is a registered trademark of Parke-Davis Pharmaceuticals Ltd.

This Medication Guide has been approved by the U.S. Food and Drug Administration.

West-ward Pharmaceutical Corp

Eatontown, NJ 07724-USA

Distributor

Manufactured by:

Hikma Pharmaceutical

P.O. Box 182400

Amman 11118

Jordan

Revised: April 2009

Rosiglitazone pharmaceutical active ingredients containing related brand and generic drugs:

Active ingredient is the part of the drug or medicine which is biologically active. This portion of the drug is responsible for the main action of the drug which is intended to cure or reduce the symptom or disease. The other portions of the drug which are inactive are called excipients; there role is to act as vehicle or binder. In contrast to active ingredient, the inactive ingredient's role is not significant in the cure or treatment of the disease. There can be one or more active ingredients in a drug.


Rosiglitazone available forms, composition, doses:

Form of the medicine is the form in which the medicine is marketed in the market, for example, a medicine X can be in the form of capsule or the form of chewable tablet or the form of tablet. Sometimes same medicine can be available as injection form. Each medicine cannot be in all forms but can be marketed in 1, 2, or 3 forms which the pharmaceutical company decided based on various background research results.
Composition is the list of ingredients which combinedly form a medicine. Both active ingredients and inactive ingredients form the composition. The active ingredient gives the desired therapeutic effect whereas the inactive ingredient helps in making the medicine stable.
Doses are various strengths of the medicine like 10mg, 20mg, 30mg and so on. Each medicine comes in various doses which is decided by the manufacturer, that is, pharmaceutical company. The dose is decided on the severity of the symptom or disease.

Price
Avandia 2 mg tablet3.22 USD
Avandia 4 mg tablet4.72 USD
Avandia 8 mg tablet8.69 USD
Tablets; Oral; Rosiglitazone Maleate 2 mg
Tablets; Oral; Rosiglitazone Maleate 4 mg
Tablets; Oral; Rosiglitazone Maleate 8 mg

Rosiglitazone destination | category:

Destination is defined as the organism to which the drug or medicine is targeted. For most of the drugs what we discuss, human is the drug destination.
Drug category can be defined as major classification of the drug. For example, an antihistaminic or an antipyretic or anti anginal or pain killer, anti-inflammatory or so.


Rosiglitazone Anatomical Therapeutic Chemical codes:

A medicine is classified depending on the organ or system it acts [Anatomical], based on what result it gives on what disease, symptom [Therapeutical], based on chemical composition [Chemical]. It is called as ATC code. The code is based on Active ingredients of the medicine. A medicine can have different codes as sometimes it acts on different organs for different indications. Same way, different brands with same active ingredients and same indications can have same ATC code.


Rosiglitazone pharmaceutical companies:

Pharmaceutical companies are drug manufacturing companies that help in complete development of the drug from the background research to formation, clinical trials, release of the drug into the market and marketing of the drug.
Researchers are the persons who are responsible for the scientific research and is responsible for all the background clinical trials that resulted in the development of the drug.


advertisement

References

  1. Dailymed."ROSIGLITAZONE MALEATE TABLET [WEST-WARD PHARMACEUTICAL CORP]". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  2. "rosiglitazone". https://pubchem.ncbi.nlm.nih.gov/co... (accessed August 28, 2018).
  3. "rosiglitazone". http://www.drugbank.ca/drugs/DB0041... (accessed August 28, 2018).

Frequently asked Questions

Can i drive or operate heavy machine after consuming Rosiglitazone?

Depending on the reaction of the Rosiglitazone after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Rosiglitazone not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.

Is Rosiglitazone addictive or habit forming?

Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.

Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.

advertisement

Review

sdrugs.com conducted a study on Rosiglitazone, and the result of the survey is set out below. It is noteworthy that the product of the survey is based on the perception and impressions of the visitors of the website as well as the views of Rosiglitazone consumers. We, as a result of this, advice that you do not base your therapeutic or medical decisions on this result, but rather consult your certified medical experts for their recommendations.

Visitor reports

Visitor reported useful

No survey data has been collected yet

Visitor reported side effects

No survey data has been collected yet

Visitor reported price estimates

No survey data has been collected yet

Visitor reported frequency of use

No survey data has been collected yet

Visitor reported doses

No survey data has been collected yet

Visitor reported time for results

No survey data has been collected yet

Visitor reported administration

No survey data has been collected yet

Visitor reported age

No survey data has been collected yet

Visitor reviews


There are no reviews yet. Be the first to write one!


Your name: 
Email: 
Spam protection:  < Type 28 here

The information was verified by Dr. Rachana Salvi, MD Pharmacology

© 2002 - 2024 "sdrugs.com". All Rights Reserved