Nu-Lovastatin

How long you have been taking the medicine?
advertisement

Nu-Lovastatin uses


DESCRIPTION

Nu-Lovastatin, USP is a cholesterol lowering agent isolated from a strain of Aspergillus terreus. After oral ingestion, Nu-Lovastatin, USP, which is an inactive lactone, is hydrolyzed to the corresponding β-hydroxyacid form. This is a principal metabolite and an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. This enzyme catalyzes the conversion of HMG-CoA to mevalonate, which is an early and rate limiting step in the biosynthesis of cholesterol.

Nu-Lovastatin, USP is [1S-[1α(R*),3α,7β,8β(2S*,4S*),8aβ]]-1,2,3,7,8,8a-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalenyl 2-methylbutanoate. Its structural formula is:

Nu-Lovastatin, USP is a white, nonhygroscopic crystalline powder that is insoluble in water and sparingly soluble in ethanol, methanol, and acetonitrile.

Nu-Lovastatin Tablets USP are supplied as 10 mg, 20 mg and 40 mg tablets for oral administration. In addition to the active ingredient Nu-Lovastatin, USP, each tablet contains the following inactive ingredients: lactose monohydrate, magnesium stearate, microcrystalline cellulose, and pregelatinized corn starch. Butylated hydroxyanisole (BHA) is added as a preservative. Nu-Lovastatin Tablets USP, 10 mg also contain FD&C Yellow #6 Aluminum Lake. Nu-Lovastatin Tablets USP, 20 mg also contain FD&C Blue #1 Aluminum Lake. Nu-Lovastatin Tablets USP, 40 mg also contain D&C Yellow #10 Aluminum Lake, FD&C Blue #1 Aluminum Lake, and FD&C Yellow #6 Aluminum Lake.

CLINICAL PHARMACOLOGY

The involvement of low-density lipoprotein cholesterol in atherogenesis has been well-documented in clinical and pathological studies, as well as in many animal experiments. Epidemiological and clinical studies have established that high LDL-C and low high-density lipoprotein cholesterol (HDL-C) are both associated with coronary heart disease. However, the risk of developing coronary heart disease is continuous and graded over the range of cholesterol levels and many coronary events do occur in patients with total cholesterol (total-C) and LDL-C in the lower end of this range.

Nu-Lovastatin has been shown to reduce elevated LDL-C concentrations. LDL is formed from very low-density lipoprotein (VLDL) and is catabolized predominantly by the high affinity LDL receptor. The mechanism of the LDL-lowering effect of Nu-Lovastatin may involve both reduction of VLDL-C concentration, and induction of the LDL receptor, leading to reduced production and/or increased catabolism of LDL-C. Apolipoprotein B also falls during treatment with Nu-Lovastatin.

Nu-Lovastatin is a specific inhibitor of HMG-CoA reductase, the enzyme which catalyzes the conversion of HMG-CoA to mevalonate. The conversion of HMG-CoA to mevalonate is an early step in the biosynthetic pathway for cholesterol.

Pharmacokinetics

Nu-Lovastatin is a lactone which is readily hydrolyzed in vivo to the corresponding β-hydroxyacid, a strong inhibitor of HMG-CoA reductase. Inhibition of HMG-CoA reductase is the basis for an assay in pharmacokinetic studies of the β-hydroxyacid metabolites (active inhibitors) and, following base hydrolysis, active plus latent inhibitors (total inhibitors) in plasma following administration of Nu-Lovastatin.

Following an oral dose of 14C-labeled Nu-Lovastatin in man, 10% of the dose was excreted in urine and 83% in feces. The latter represents absorbed drug equivalents excreted in bile, as well as any unabsorbed drug. Plasma concentrations of total radioactivity (lovastatin plus 14C-metabolites) peaked at 2 hours and declined rapidly to about 10% of peak by 24 hours postdose. Absorption of Nu-Lovastatin, estimated relative to an intravenous reference dose, in each of four animal species tested, averaged about 30% of an oral dose. In animal studies, after oral dosing, Nu-Lovastatin had high selectivity for the liver, where it achieved substantially higher concentrations than in non-target tissues. Nu-Lovastatin undergoes extensive first-pass extraction in the liver, its primary site of action, with subsequent excretion of drug equivalents in the bile. As a consequence of extensive hepatic extraction of Nu-Lovastatin, the availability of drug to the general circulation is low and variable. In a single dose study in four hypercholesterolemic patients, it was estimated that less than 5% of an oral dose of Nu-Lovastatin reaches the general circulation as active inhibitors. Following administration of Nu-Lovastatin tablets the coefficient of variation, based on between-subject variability, was approximately 40% for the area under the curve (AUC) of total inhibitory activity in the general circulation.

Both Nu-Lovastatin and its β-hydroxyacid metabolite are highly bound (> 95%) to human plasma proteins. Animal studies demonstrated that Nu-Lovastatin crosses the blood-brain and placental barriers.

The major active metabolites present in human plasma are the β-hydroxyacid of Nu-Lovastatin, its 6′-hydroxy derivative, and two additional metabolites. Peak plasma concentrations of both active and total inhibitors were attained within 2 to 4 hours of dose administration. While the recommended therapeutic dose range is 10 to 80 mg/day, linearity of inhibitory activity in the general circulation was established by a single dose study employing Nu-Lovastatin tablet dosages from 60 to as high as 120 mg. With a once-a-day dosing regimen, plasma concentrations of total inhibitors over a dosing interval achieved a steady state between the second and third days of therapy and were about 1.5 times those following a single dose. When Nu-Lovastatin was given under fasting conditions, plasma concentrations of total inhibitors were on average about two-thirds those found when Nu-Lovastatin was administered immediately after a standard test meal.

In a study of patients with severe renal insufficiency (creatinine clearance 10 to 30 mL/min), the plasma concentrations of total inhibitors after a single dose of Nu-Lovastatin were approximately two-fold higher than those in healthy volunteers.

In a study including 16 elderly patients between 70 to 78 years of age who received Nu-Lovastatin 80 mg/day, the mean plasma level of HMG-CoA reductase inhibitory activity was increased approximately 45% compared with 18 patients between 18 to 30 years of age (see PRECAUTIONS, Geriatric Use).

Although the mechanism is not fully understood, cyclosporine has been shown to increase the AUC of HMG-CoA reductase inhibitors. The increase in AUC for Nu-Lovastatin and Nu-Lovastatin acid is presumably due, in part, to inhibition of CYP3A4.

The risk of myopathy is increased by high levels of HMG-CoA reductase inhibitory activity in plasma. Strong inhibitors of CYP3A4 can raise the plasma levels of HMG-CoA reductase inhibitory activity and increase the risk of myopathy (see WARNINGS, Myopathy/Rhabdomyolysis and PRECAUTIONS, Drug Interactions).

Nu-Lovastatin is a substrate for cytochrome P450 isoform 3A4 (CYP3A4) (see PRECAUTIONS, Drug Interactions). Grapefruit juice contains one or more components that inhibit CYP3A4 and can increase the plasma concentrations of drugs metabolized by CYP3A4. In one study1, 10 subjects consumed 200 mL of double-strength grapefruit juice (one can of frozen concentrate diluted with one rather than 3 cans of water) three times daily for 2 days and an additional 200 mL double-strength grapefruit juice together with and 30 and 90 minutes following a single dose of 80 mg Nu-Lovastatin on the third day. This regimen of grapefruit juice resulted in a mean increase in the serum concentration of Nu-Lovastatin and its β-hydroxyacid metabolite (as measured by the area under the concentration-time curve) of 15 fold and 5 fold, respectively [as measured using a chemical assay - high performance liquid chromatography]. In a second study, 15 subjects consumed one 8 oz glass of single-strength grapefruit juice (one can of frozen concentrate diluted with 3 cans of water) with breakfast for 3 consecutive days and a single dose of 40 mg Nu-Lovastatin in the evening of the third day. This regimen of grapefruit juice resulted in a mean increase in the plasma concentration (as measured by the area under the concentration-time curve) of active and total HMG-CoA reductase inhibitory activity [using an enzyme inhibition assay both before (for active inhibitors) and after (for total inhibitors) base hydrolysis] of 1.34 fold and 1.36 fold, respectively, and of Nu-Lovastatin and its β-hydroxyacid metabolite [measured using a chemical assay - liquid chromatography/tandem mass spectrometry - different from that used in the first1 study] of 1.94 fold and 1.57 fold, respectively. The effect of amounts of grapefruit juice between those used in these two studies on Nu-Lovastatin pharmacokinetics has not been studied.

1 Kantola, T, et al., Clin Pharmacol Ther 1998; 63(4):397-402.

Number of Subjects Dosing of Coadministered Drug or Grapefruit Juice Dosing of Nu-Lovastatin AUC RatioResults based on a chemical assay. (with/without coadministered drug) No Effect = 1.00
Nu-Lovastatin Nu-Lovastatin acidNu-Lovastatin acid refers to the β-hydroxyacid of Nu-Lovastatin.
Gemfibrozil 11 600 mg BID for 3 days 40 mg 0.96 2.80
ItraconazoleThe mean total AUC of Nu-Lovastatin without itraconazole phase could not be determined accurately. Results could be representative of strong CYP3A4 inhibitors such as ketoconazole, posaconazole, clarithromycin, telithromycin, HIV protease inhibitors, and nefazodone. 12 200 mg QD for 4 days 40 mg on Day 4 > 36Estimated minimum change. 22
10 100 mg QD for 4 days 40 mg on Day 4 > 14.8 15.4
Grapefruit JuiceThe effect of amounts of grapefruit juice between those used in these two studies on Nu-Lovastatin pharmacokinetics has not been studied. (high dose) 10 200 mL of double-strength TIDDouble-strength: one can of frozen concentrate diluted with one can of water. Grapefruit juice was administered TID for 2 days, and 200 mL together with single dose Nu-Lovastatin and 30 and 90 minutes following single dose Nu-Lovastatin on Day 3. 80 mg single dose 15.3 5.0
Grapefruit Juice (low dose) 16 8 oz (about 250 mL) of single-strengthSingle-strength: one can of frozen concentrate diluted with 3 cans of water. Grapefruit juice was administered with breakfast for 3 days, and Nu-Lovastatin was administered in the evening on Day 3. for 4 days 40 mg single dose 1.94 1.57
Cyclosporine 16 Not describedCyclosporine-treated patients with psoriasis or post kidney or heart transplant patients with stable graft function, transplanted at least 9 months prior to study. 10 mg QD for 10 days 5 to 8 fold NDND = Analyte not determined.
Number of Subjects Dosing of Coadministered Drug or Grapefruit Juice Dosing of Nu-Lovastatin AUC Ratio (with/without coadministered drug) No Effect = 1.00
Total Nu-Lovastatin acidLactone converted to acid by hydrolysis prior to analysis. Figure represents total unmetabolized acid and lactone.
Diltiazem 10 120 mg BID for 14 days 20 mg 3.57

Clinical Studies in Adults

Nu-Lovastatin has been shown to reduce total-C and LDL-C in heterozygous familial and non-familial forms of primary hypercholesterolemia and in mixed hyperlipidemia. A marked response was seen within 2 weeks, and the maximum therapeutic response occurred within 4 to 6 weeks. The response was maintained during continuation of therapy. Single daily doses given in the evening were more effective than the same dose given in the morning, perhaps because cholesterol is synthesized mainly at night.

In multicenter, double-blind studies in patients with familial or non-familial hypercholesterolemia, Nu-Lovastatin, administered in doses ranging from 10 mg q.p.m. to 40 mg b.i.d., was compared to placebo. Nu-Lovastatin significantly decreased plasma total-C, LDL-C, total-C/HDL-C ratio and LDL-C/HDL-C ratio. In addition, Nu-Lovastatin produced increases of variable magnitude in HDL-C, and modestly decreased VLDL-C and plasma TG (see TABLES II through IV for dose response results).

The results of a study in patients with primary hypercholesterolemia are presented in TABLE II.

DOSAGE N TOTAL-C LDL-C HDL-C LDL-C/HDL-C TOTAL-C/HDL-C TG.
Placebo 33 -2 -1 -1 0 +1 +9
Nu-Lovastatin
10 mg q.p.m. 33 -16 -21 +5 -24 -19 -10
20 mg q.p.m. 33 -19 -27 +6 -30 -23 +9
10 mg b.i.d. 32 -19 -28 +8 -33 -25 -7
40 mg q.p.m. 33 -22 -31 +5 -33 -25 -8
20 mg b.i.d. 36 -24 -32 +2 -32 -24 -6

Nu-Lovastatin was compared to cholestyramine in a randomized open parallel study. The study was performed with patients with hypercholesterolemia who were at high risk of myocardial infarction. Summary results are presented in TABLE III.

TREATMENT N TOTAL-C (mean) LDL-C (mean) HDL-C (mean) LDL-C/HDL-C (mean) TOTAL-C/HDL-C (mean) VLDL-C (median) TG. (mean)
Nu-Lovastatin
20 mg b.i.d. 85 -27 -32 +9 -36 -31 -34 -21
40 mg b.i.d. 88 -34 -42 +8 -44 -37 -31 -27
Cholestyramine
12 g b.i.d. 88 -17 -23 +8 -27 -21 +2 +11

Nu-Lovastatin was studied in controlled trials in hypercholesterolemic patients with well-controlled non-insulin dependent diabetes mellitus with normal renal function. The effect of Nu-Lovastatin on lipids and lipoproteins and the safety profile of Nu-Lovastatin were similar to that demonstrated in studies in nondiabetics. Nu-Lovastatin had no clinically important effect on glycemic control or on the dose requirement of oral hypoglycemic agents.

Expanded Clinical Evaluation of Nu-Lovastatin Study

Nu-Lovastatin was compared to placebo in 8,245 patients with hypercholesterolemia (total-C 240 to 300 mg/dL [6.2 mmol/L to 7.6 mmol/L], LDL-C > 160 mg/dL [4.1 mmol/L]) in the randomized, double-blind, parallel, 48 week EXCEL study. All changes in the lipid measurements (TABLE IV) in Nu-Lovastatin treated patients were dose-related and significantly different from placebo (p ≤ 0.001). These results were sustained throughout the study.

DOSAGE NPatients enrolled TOTAL-C (mean) LDL-C (mean) HDL-C (mean) LDL-C/HDL-C (mean) TOTAL-C/HDL-C (mean) TG. (median)
Placebo 1663 +0.7 +0.4 +2.0 +0.2 +0.6 +4
Nu-Lovastatin
20 mg q.p.m. 1642 -17 -24 +6.6 -27 -21 -10
40 mg q.p.m. 1645 -22 -30 +7.2 -34 -26 -14
20 mg b.i.d. 1646 -24 -34 +8.6 -38 -29 -16
40 mg b.i.d. 1649 -29 -40 +9.5 -44 -34 -19

Air Force/Texas Coronary Atherosclerosis Prevention Study

The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), a double-blind, randomized, placebo-controlled, primary prevention study, demonstrated that treatment with Nu-Lovastatin decreased the rate of acute major coronary events (composite endpoint of myocardial infarction, unstable angina, and sudden cardiac death) compared with placebo during a median of 5.1 years of follow-up. Participants were middle-aged and elderly men (ages 45 to 73) and women (ages 55 to 73) without symptomatic cardiovascular disease with average to moderately elevated total-C and LDL-C, below average HDL-C, and who were at high risk based on elevated total-C/HDL-C. In addition to age, 63% of the participants had at least one other risk factor (baseline HDL-C < 35 mg/dL, hypertension, family history, smoking and diabetes).

AFCAPS/TexCAPS enrolled 6,605 participants (5,608 men, 997 women) based on the following lipid entry criteria: total-C range of 180 to 264 mg/dL, LDL-C range of 130 to 190 mg/dL, HDL-C of ≤ 45 mg/dL for men and ≤ 47 mg/dL for women, and TG of ≤ 400 mg/dL. Participants were treated with standard care, including diet, and either Nu-Lovastatin 20 to 40 mg daily (n = 3,304) or placebo (n = 3,301). Approximately 50% of the participants treated with Nu-Lovastatin were titrated to 40 mg daily when their LDL-C remained > 110 mg/dL at the 20 mg starting dose.

Nu-Lovastatin reduced the risk of a first acute major coronary event, the primary efficacy endpoint, by 37% (lovastatin 3.5%, placebo 5.5%; p < 0.001; Figure 1). A first acute major coronary event was defined as myocardial infarction (54 participants on Nu-Lovastatin, 94 on placebo) or unstable angina (54 vs. 80) or sudden cardiac death (8 vs. 9). Furthermore, among the secondary endpoints, Nu-Lovastatin reduced the risk of unstable angina by 32% (1.8 vs. 2.6%; p = 0.023), of myocardial infarction by 40% (1.7 vs. 2.9%; p = 0.002), and of undergoing coronary revascularization procedures (e.g., coronary artery bypass grafting or percutaneous transluminal coronary angioplasty) by 33% (3.2 vs. 4.8%; p = 0.001). Trends in risk reduction associated with treatment with Nu-Lovastatin were consistent across men and women, smokers and non-smokers, hypertensives and non-hypertensives, and older and younger participants. Participants with ≥ 2 risk factors had risk reductions (RR) in both acute major coronary events (RR 43%) and coronary revascularization procedures (RR 37%). Because there were too few events among those participants with age as their only risk factor in this study, the effect of Nu-Lovastatin on outcomes could not be adequately assessed in this subgroup.

Atherosclerosis

In the Canadian Coronary Atherosclerosis Intervention Trial, the effect of therapy with Nu-Lovastatin on coronary atherosclerosis was assessed by coronary angiography in hyperlipidemic patients. In the randomized, double-blind, controlled clinical trial, patients were treated with conventional measures (usually diet and 325 mg of aspirin every other day) and either Nu-Lovastatin 20 to 80 mg daily or placebo. Angiograms were evaluated at baseline and at two years by computerized quantitative coronary angiography (QCA). Nu-Lovastatin significantly slowed the progression of lesions as measured by the mean change per patient in minimum lumen diameter (the primary endpoint) and percent diameter stenosis, and decreased the proportions of patients categorized with disease progression (33% vs. 50%) and with new lesions (16% vs. 32%).

In a similarly designed trial, the Monitored Atherosclerosis Regression Study (MARS), patients were treated with diet and either Nu-Lovastatin 80 mg daily or placebo. No statistically significant difference between Nu-Lovastatin and placebo was seen for the primary endpoint (mean change per patient in percent diameter stenosis of all lesions), or for most secondary QCA endpoints. Visual assessment by angiographers who formed a consensus opinion of overall angiographic change (Global Change Score) was also a secondary endpoint. By this endpoint, significant slowing of disease was seen, with regression in 23% of patients treated with Nu-Lovastatin compared to 11% of placebo patients.

In the Familial Atherosclerosis Treatment Study (FATS), either Nu-Lovastatin or niacin in combination with a bile acid sequestrant for 2.5 years in hyperlipidemic subjects significantly reduced the frequency of progression and increased the frequency of regression of coronary atherosclerotic lesions by QCA compared to diet and, in some cases, low-dose resin.

The effect of Nu-Lovastatin on the progression of atherosclerosis in the coronary arteries has been corroborated by similar findings in another vasculature. In the Asymptomatic Carotid Artery Progression Study (ACAPS), the effect of therapy with Nu-Lovastatin on carotid atherosclerosis was assessed by B-mode ultrasonography in hyperlipidemic patients with early carotid lesions and without known coronary heart disease at baseline. In this double-blind, controlled clinical trial, 919 patients were randomized in a 2 x 2 factorial design to placebo, Nu-Lovastatin 10 to 40 mg daily and/or warfarin. Ultrasonograms of the carotid walls were used to determine the change per patient from baseline to three years in mean maximum intimal-medial thickness (IMT) of 12 measured segments. There was a significant regression of carotid lesions in patients receiving Nu-Lovastatin alone compared to those receiving placebo alone (p = 0.001). The predictive value of changes in IMT for stroke has not yet been established. In the Nu-Lovastatin group there was a significant reduction in the number of patients with major cardiovascular events relative to the placebo group (5 vs. 14) and a significant reduction in all-cause mortality (1 vs. 8).

Eye

There was a high prevalence of baseline lenticular opacities in the patient population included in the early clinical trials with Nu-Lovastatin. During these trials the appearance of new opacities was noted in both the Nu-Lovastatin and placebo groups. There was no clinically significant change in visual acuity in the patients who had new opacities reported nor was any patient, including those with opacities noted at baseline, discontinued from therapy because of a decrease in visual acuity.

A three-year, double-blind, placebo-controlled study in hypercholesterolemic patients to assess the effect of Nu-Lovastatin on the human lens demonstrated that there were no clinically or statistically significant differences between the Nu-Lovastatin and placebo groups in the incidence, type or progression of lenticular opacities. There are no controlled clinical data assessing the lens available for treatment beyond three years.

Clinical Studies in Adolescent Patients

Efficacy of Nu-Lovastatin in Adolescent Boys With Heterozygous Familial Hypercholesterolemia

In a double-blind, placebo-controlled study, 132 boys 10 to 17 years of age with heterozygous familial hypercholesterolemia (heFH) were randomized to Nu-Lovastatin (n = 67) or placebo (n = 65) for 48 weeks. Inclusion in the study required a baseline LDL-C level between 189 and 500 mg/dL and at least one parent with an LDL-C level > 189 mg/dL. The mean baseline LDL-C value was 253.1 mg/dL (range: 171 to 379 mg/dL) in the Nu-Lovastatin group compared to 248.2 mg/dL (range: 158.5 to 413.5 mg/dL) in the placebo group. The dosage of Nu-Lovastatin (once daily in the evening) was 10 mg for the first 8 weeks, 20 mg for the second 8 weeks, and 40 mg thereafter.

Nu-Lovastatin significantly decreased plasma levels of total-C, LDL-C and apolipoprotein B (see TABLE V).

DOSAGE N TOTAL-C LDL-C HDL-C TG.data presented as median percent changes Apolipoprotein B
Placebo 61 -1.1 -1.4 -2.2 -1.4 -4.4
Nu-Lovastatin 64 -19.3 -24.2 +1.1 -1.9 -21

The mean achieved LDL-C value was 190.9 mg/dL (range: 108 to 336 mg/dL) in the Nu-Lovastatin group compared to 244.8 mg/dL (range: 135 to 404 mg/dL) in the placebo group.

Efficacy of Nu-Lovastatin in Post-Menarchal Girls With Heterozygous Familial Hypercholesterolemia

In a double-blind, placebo-controlled study, 54 girls 10 to 17 years of age who were at least 1 year post-menarche with heFH were randomized to Nu-Lovastatin (n = 35) or placebo (n = 19) for 24 weeks. Inclusion in the study required a baseline LDL-C level of 160 to 400 mg/dL and a parental history of familial hypercholesterolemia. The mean baseline LDL-C value was 218.3 mg/dL (range: 136.3 to 363.7 mg/dL) in the Nu-Lovastatin group compared to 198.8 mg/dL (range: 151.1 to 283.1 mg/dL) in the placebo group. The dosage of Nu-Lovastatin (once daily in the evening) was 20 mg for the first 4 weeks, and 40 mg thereafter.

Nu-Lovastatin significantly decreased plasma levels of total-C, LDL-C, and apolipoprotein B (see TABLE VI).

DOSAGE N TOTAL-C LDL-C HDL-C TG.data presented as median percent changes Apolipoprotein B
Placebo 18 +3.6 +2.5 +4.8 -3.0 +6.4
Nu-Lovastatin 35 -22.4 -29.2 +2.4 -22.7 -24.4

The mean achieved LDL-C value was 154.5 mg/dL (range: 82 to 286 mg/dL) in the Nu-Lovastatin group compared to 203.5 mg/dL (range: 135 to 304 mg/dL) in the placebo group.

The safety and efficacy of doses above 40 mg daily have not been studied in children. The long-term efficacy of Nu-Lovastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established.

advertisement

INDICATIONS AND USAGE

Therapy with Nu-Lovastatin Tablets USP should be a component of multiple risk factor intervention in those individuals with dyslipidemia at risk for atherosclerotic vascular disease. Nu-Lovastatin Tablets USP should be used in addition to a diet restricted in saturated fat and cholesterol as part of a treatment strategy to lower total-C and LDL-C to target levels when the response to diet and other nonpharmacological measures alone has been inadequate to reduce risk.

Primary Prevention of Coronary Heart Disease

In individuals without symptomatic cardiovascular disease, average to moderately elevated total-C and LDL-C, and below average HDL-C, Nu-Lovastatin Tablets USP are indicated to reduce the risk of:

- Myocardial infarction

- Unstable angina

- Coronary revascularization procedures

Coronary Heart Disease

Nu-Lovastatin Tablets USP are indicated to slow the progression of coronary atherosclerosis in patients with coronary heart disease as part of a treatment strategy to lower total-C and LDL-C to target levels.

Hypercholesterolemia

Therapy with lipid-altering agents should be a component of multiple risk factor intervention in those individuals at significantly increased risk for atherosclerotic vascular disease due to hypercholesterolemia. Nu-Lovastatin Tablets USP are indicated as an adjunct to diet for the reduction of elevated total-C and LDL-C levels in patients with primary hypercholesterolemia, when the response to diet restricted in saturated fat and cholesterol and to other nonpharmacological measures alone has been inadequate.

2Classification of Hyperlipoproteinemias

Lipid Elevations
Type Lipoproteins elevated major minor
I chylomicrons TG ↑→C
IIa LDL C -
IIb LDL, VLDL C TG
III (rare) IDL C/TG -
IV VLDL TG ↑→C
V (rare) chylomicrons, VLDL TG ↑→C
IDL = intermediate-density lipoprotein.

Adolescent Patients With Heterozygous Familial Hypercholesterolemia

Nu-Lovastatin Tablets USP are indicated as an adjunct to diet to reduce total-C, LDL-C and apolipoprotein B levels in adolescent boys and girls who are at least one year post-menarche, 10 to 17 years of age, with heFH if after an adequate trial of diet therapy the following findings are present:

General Recommendations

Prior to initiating therapy with Nu-Lovastatin, secondary causes for hypercholesterolemia (e.g., poorly controlled diabetes mellitus, hypothyroidism, nephrotic syndrome, dysproteinemias, obstructive liver disease, other drug therapy, alcoholism) should be excluded, and a lipid profile performed to measure total-C, HDL-C, and TG. For patients with TG less than 400 mg/dL (< 4.5 mmol/L), LDL-C can be estimated using the following equation:

LDL-C = total-C - [0.2 x (TG) + HDL-C]

For TG levels > 400 mg/dL (> 4.5 mmol/L), this equation is less accurate and LDL-C concentrations should be determined by ultracentrifugation. In hypertriglyceridemic patients, LDL-C may be low or normal despite elevated total-C. In such cases, Nu-Lovastatin Tablets USP are not indicated.

The National Cholesterol Education Program (NCEP) Treatment Guidelines are summarized below:

Risk Category LDL Goal (mg/dL) LDL Level at Which to Initiate Therapeutic Lifestyle Changes (mg/dL) LDL Level at Which to Consider Drug Therapy (mg/dL)
CHDCHD, coronary heart disease or CHD risk equivalents (10 year risk > 20%) < 100 ≥ 100 ≥ 130 (100 to 129: drug optional)Some authorities recommend use of LDL-lowering drugs in this category if an LDL-C level of < 100 mg/dL cannot be achieved by therapeutic lifestyle changes. Others prefer use of drugs that primarily modify triglycerides and HDL-C, e.g., nicotinic acid or fibrate. Clinical judgment also may call for deferring drug therapy in this subcategory.
2+ Risk factors (10 year risk ≤ 20%) < 130 ≥ 130 10 year risk 10 to 20%: ≥ 130
10 year risk < 10%: ≥ 160
0 to 1 Risk factorAlmost all people with 0 to 1 risk factor have a 10 year risk < 10%; thus, 10 year risk assessment in people with 0 to 1 risk factor is not necessary. < 160 ≥ 160 ≥ 190 (160 to 189: LDL-lowering drug optional)

After the LDL-C goal has been achieved, if the TG is still ≥ 200 mg/dL, non-HDL-C (total-C minus HDL-C) becomes a secondary target of therapy. Non-HDL-C goals are set 30 mg/dL higher than LDL-C goals for each risk category.

At the time of hospitalization for an acute coronary event, consideration can be given to initiating drug therapy at discharge if the LDL-C is ≥ 130 mg/dL (see NCEP Treatment Guidelines above).

Since the goal of treatment is to lower LDL-C, the NCEP recommends that LDL-C levels be used to initiate and assess treatment response. Only if LDL-C levels are not available, should the total-C be used to monitor therapy.

Although Nu-Lovastatin Tablets USP may be useful to reduce elevated LDL-C levels in patients with combined hypercholesterolemia and hypertriglyceridemia where hypercholesterolemia is the major abnormality (Type IIb hyperlipoproteinemia), it has not been studied in conditions where the major abnormality is elevation of chylomicrons, VLDL or IDL (i.e., hyperlipoproteinemia types I, III, IV, or V).***

The NCEP classification of cholesterol levels in pediatric patients with a familial history of hypercholesterolemia or premature cardiovascular disease is summarized below:

Category Total-C (mg/dL) LDL-C (mg/dL)
Acceptable < 170 < 110
Borderline 170 to 199 110 to 129
High ≥ 200 ≥ 130

Children treated with Nu-Lovastatin in adolescence should be re-evaluated in adulthood and appropriate changes made to their cholesterol-lowering regimen to achieve adult goals for LDL-C.

advertisement

CONTRAINDICATIONS

Hypersensitivity to any component of this medication.

Active liver disease or unexplained persistent elevations of serum transaminases.

Concomitant administration with strong CYP3A4 inhibitors (e.g., itraconazole, ketoconazole, posaconazole, voriconazole, HIV protease inhibitors, boceprevir, telaprevir, erythromycin, clarithromycin, telithromycin, nefazodone and cobicistat-containing products) (see WARNINGS, Myopathy/Rhabdomyolysis).

Pregnancy and Lactation

(See PRECAUTIONS, Pregnancy and Nursing Mothers.)

Atherosclerosis is a chronic process and the discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. Moreover, cholesterol and other products of the cholesterol biosynthesis pathway are essential components for fetal development, including synthesis of steroids and cell membranes. Because of the ability of inhibitors of HMG-CoA reductase such as Nu-Lovastatin to decrease the synthesis of cholesterol and possibly other products of the cholesterol biosynthesis pathway, Nu-Lovastatin is contraindicated during pregnancy and in nursing mothers. Nu-Lovastatin should be administered to women of childbearing age only when such patients are highly unlikely to conceive. If the patient becomes pregnant while taking this drug, Nu-Lovastatin should be discontinued immediately and the patient should be apprised of the potential hazard to the fetus (see PRECAUTIONS, Pregnancy).

WARNINGS

Myopathy/Rhabdomyolysis

Nu-Lovastatin, like other inhibitors of HMG-CoA reductase, occasionally causes myopathy manifested as muscle pain, tenderness or weakness with creatine kinase above ten times the upper limit of normal (ULN). Myopathy sometimes takes the form of rhabdomyolysis with or without acute renal failure secondary to myoglobinuria, and rare fatalities have occurred. The risk of myopathy is increased by high levels of HMG-CoA reductase inhibitory activity in plasma.

The risk of myopathy/rhabdomyolysis is dose related. In a clinical study (EXCEL) in which patients were carefully monitored and some interacting drugs were excluded, there was one case of myopathy among 4933 patients randomized to Nu-Lovastatin 20 to 40 mg daily for 48 weeks, and 4 among 1649 patients randomized to 80 mg daily.

There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents.

All patients starting therapy with Nu-Lovastatin, or whose dose of Nu-Lovastatin is being increased, should be advised of the risk of myopathy and told to report promptly any unexplained muscle pain, tenderness or weakness particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing Nu-Lovastatin. Nu-Lovastatin therapy should be discontinued immediately if myopathy is diagnosed or suspected. In most cases, muscle symptoms and CK increases resolved when treatment was promptly discontinued. Periodic CK determinations may be considered in patients starting therapy with Nu-Lovastatin or whose dose is being increased, but there is no assurance that such monitoring will prevent myopathy.

Many of the patients who have developed rhabdomyolysis on therapy with Nu-Lovastatin have had complicated medical histories, including renal insufficiency usually as a consequence of long-standing diabetes mellitus. Such patients merit closer monitoring. Nu-Lovastatin therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected. Nu-Lovastatin therapy should also be temporarily withheld in any patient experiencing an acute or serious condition predisposing to the development of renal failure secondary to rhabdomyolysis, e.g., sepsis; hypotension; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy.

The risk of myopathy/rhabdomyolysis is increased by concomitant use of Nu-Lovastatin with the following:

Strong inhibitors of CYP3A4: Nu-Lovastatin, like several other inhibitors of HMG-CoA reductase, is a substrate of cytochrome P450 3A4 (CYP3A4). Certain drugs which inhibit this metabolic pathway can raise the plasma levels of Nu-Lovastatin and may increase the risk of myopathy. These include itraconazole, ketoconazole, posaconazole, voriconazole, the macrolide antibiotics erythromycin and clarithromycin, the ketolide antibiotic telithromycin, HIV protease inhibitors, boceprevir, telaprevir, the antidepressant nefazodone, or cobicistat-containing products. Combination of these drugs with Nu-Lovastatin is contraindicated. If short-term treatment with strong CYP3A4 inhibitors is unavoidable, therapy with Nu-Lovastatin should be suspended during the course of treatment (see CONTRAINDICATIONS; PRECAUTIONS, Drug Interactions).

Gemfibrozil: The combined use of Nu-Lovastatin with gemfibrozil should be avoided.

Other lipid-lowering drugs (other fibrates or ≥ 1 g/day of niacin): Caution should be used when prescribing other fibrates or lipid-lowering doses (≥ 1 g/day) of niacin with Nu-Lovastatin, as these agents can cause myopathy when given alone. The benefit of further alterations in lipid levels by the combined use of Nu-Lovastatin with other fibrates or niacin should be carefully weighed against the potential risks of these combinations.

Cyclosporine: The use of Nu-Lovastatin with cyclosporine should be avoided.

Danazol, diltiazem, dronedarone, or verapamil with higher doses of Nu-Lovastatin: The dose of Nu-Lovastatin should not exceed 20 mg daily in patients receiving concomitant medication with danazol, diltiazem, dronedarone, or verapamil. The benefits of the use of Nu-Lovastatin in patients receiving danazol, diltiazem, dronedarone, or verapamil should be carefully weighed against the risks of these combinations.

Amiodarone: The dose of Nu-Lovastatin should not exceed 40 mg daily in patients receiving concomitant medication with amiodarone. The combined use of Nu-Lovastatin at doses higher than 40 mg daily with amiodarone should be avoided unless the clinical benefit is likely to outweigh the increased risk of myopathy. The risk of myopathy/rhabdomyolysis is increased when amiodarone is used concomitantly with higher doses of a closely related member of the HMG-CoA reductase inhibitor class.

Colchicine: Cases of myopathy, including rhabdomyolysis, have been reported with Nu-Lovastatin coadministered with colchicine, and caution should be exercised when prescribing Nu-Lovastatin with colchicine (see PRECAUTIONS, Drug Interactions).

Ranolazine: The risk of myopathy, including rhabdomyolysis, may be increased by concomitant administration of ranolazine. Dose adjustment of Nu-Lovastatin may be considered during coadministration with ranolazine.

Prescribing recommendations for interacting agents are summarized in Table VII (see also CLINICAL PHARMACOLOGY, Pharmacokinetics; PRECAUTIONS, Drug Interactions; DOSAGE AND ADMINISTRATION).

Interacting Agents Prescribing Recommendations
Strong CYP3A4 inhibitors, e.g.: Contraindicated with Nu-Lovastatin
Ketoconazole
Itraconazole
Posaconazole
Voriconazole
Erythromycin
Clarithromycin
Telithromycin
HIV protease inhibitors
Boceprevir
Telaprevir
Nefazodone
Cobicistat-containing products
Gemfibrozil Avoid with Nu-Lovastatin
Cyclosporine
Danazol Do not exceed 20 mg Nu-Lovastatin daily
Diltiazem
Dronedarone
Verapamil
Amiodarone Do not exceed 40 mg Nu-Lovastatin daily
Grapefruit juice Avoid grapefruit juice

Liver Dysfunction

Persistent increases (to more than 3 times the upper limit of normal) in serum transaminases occurred in 1.9% of adult patients who received Nu-Lovastatin for at least one year in early clinical trials. When the drug was interrupted or discontinued in these patients, the transaminase levels usually fell slowly to pretreatment levels. The increases usually appeared 3 to 12 months after the start of therapy with Nu-Lovastatin, and were not associated with jaundice or other clinical signs or symptoms. There was no evidence of hypersensitivity. In the EXCEL study (see CLINICAL PHARMACOLOGY, Clinical Studies in Adults), the incidence of persistent increases in serum transaminases over 48 weeks was 0.1% for placebo, 0.1% at 20 mg/day, 0.9% at 40 mg/day, and 1.5% at 80 mg/day in patients on Nu-Lovastatin. However, in postmarketing experience with Nu-Lovastatin, symptomatic liver disease has been reported rarely at all dosages (see ADVERSE REACTIONS).

In AFCAPS/TexCAPS, the number of participants with consecutive elevations of either alanine aminotransferase (ALT) or aspartate aminotransferase (AST) (> 3 times the upper limit of normal), over a median of 5.1 years of follow-up, was not significantly different between the Nu-Lovastatin and placebo groups (18 [0.6%] vs. 11 [0.3%]). The starting dose of Nu-Lovastatin was 20 mg/day; 50% of the Nu-Lovastatin treated participants were titrated to 40 mg/day at Week 18. Of the 18 participants on Nu-Lovastatin with consecutive elevations of either ALT or AST, 11 (0.7%) elevations occurred in participants taking 20 mg/day, while 7 (0.4%) elevations occurred in participants titrated to 40 mg/day. Elevated transaminases resulted in discontinuation of 6 (0.2%) participants from therapy in the Nu-Lovastatin group (n = 3,304) and 4 (0.1%) in the placebo group (n = 3,301).

It is recommended that liver enzyme tests be obtained prior to initiating therapy with Nu-Lovastatin and repeated as clinically indicated.

There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including Nu-Lovastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with Nu-Lovastatin, promptly interrupt therapy. If an alternate etiology is not found do not restart Nu-Lovastatin.

The drug should be used with caution in patients who consume substantial quantities of alcohol and/or have a past history of liver disease. Active liver disease or unexplained transaminase elevations are contraindications to the use of Nu-Lovastatin.

Moderate (less than three times the upper limit of normal) elevations of serum transaminases have been reported following therapy with Nu-Lovastatin (see ADVERSE REACTIONS). These changes appeared soon after initiation of therapy with Nu-Lovastatin, were often transient, were not accompanied by any symptoms and interruption of treatment was not required.

advertisement

PRECAUTIONS

General

Nu-Lovastatin may elevate creatine phosphokinase and transaminase levels. This should be considered in the differential diagnosis of chest pain in a patient on therapy with Nu-Lovastatin.

Homozygous Familial Hypercholesterolemia

Nu-Lovastatin is less effective in patients with the rare homozygous familial hypercholesterolemia, possibly because these patients have no functional LDL receptors. Nu-Lovastatin appears to be more likely to raise serum transaminases (see ADVERSE REACTIONS) in these homozygous patients.

Information for Patients

Patients should be advised about substances they should not take concomitantly with Nu-Lovastatin and be advised to report promptly unexplained muscle pain, tenderness, or weakness particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing Nu-Lovastatin . Patients should also be advised to inform other physicians prescribing a new medication that they are taking Nu-Lovastatin.

It is recommended that liver enzymes be checked before starting therapy, and if signs or symptoms of liver injury occur. All patients treated with Nu-Lovastatin should be advised to report promptly any symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine or jaundice.

Drug Interactions

CYP3A4 Interactions

Nu-Lovastatin is metabolized by CYP3A4 but has no CYP3A4 inhibitory activity; therefore it is not expected to affect the plasma concentrations of other drugs metabolized by CYP3A4. Strong inhibitors of CYP3A4, and grapefruit juice increase the risk of myopathy by reducing the elimination of Nu-Lovastatin (see CONTRAINDICATIONS, WARNINGS, Myopathy/Rhabdomyolysis, and CLINICAL PHARMACOLOGY, Pharmacokinetics).

Interactions With Lipid-Lowering Drugs That Can Cause Myopathy When Given Alone

The risk of myopathy is also increased by the following lipid-lowering drugs that are not strong CYP3A4 inhibitors, but which can cause myopathy when given alone.

See WARNINGS, Myopathy/Rhabdomyolysis.

Gemfibrozil

Other fibrates

Niacin (nicotinic acid) (≥ 1 g/day)

Other Drug Interactions

Cyclosporine

The risk of myopathy/rhabdomyolysis is increased by concomitant administration of cyclosporine.

Danazol, Diltiazem, Dronedarone or Verapamil

The risk of myopathy/rhabdomyolysis is increased by concomitant administration of danazol, diltiazem, dronedarone or verapamil particularly with higher doses of Nu-Lovastatin (see WARNINGS, Myopathy/Rhabdomyolysis; CLINICAL PHARMACOLOGY, Pharmacokinetics).

Amiodarone

The risk of myopathy/rhabdomyolysis is increased when amiodarone is used concomitantly with a closely related member of the HMG-CoA reductase inhibitor class.

Coumarin Anticoagulants

In a small clinical trial in which Nu-Lovastatin was administered to warfarin treated patients, no effect on prothrombin time was detected. However, another HMG-CoA reductase inhibitor has been found to produce a less than two-second increase in prothrombin time in healthy volunteers receiving low doses of warfarin. Also, bleeding and/or increased prothrombin time have been reported in a few patients taking coumarin anticoagulants concomitantly with Nu-Lovastatin. It is recommended that in patients taking anticoagulants, prothrombin time be determined before starting Nu-Lovastatin and frequently enough during early therapy to insure that no significant alteration of prothrombin time occurs. Once a stable prothrombin time has been documented, prothrombin times can be monitored at the intervals usually recommended for patients on coumarin anticoagulants. If the dose of Nu-Lovastatin is changed, the same procedure should be repeated. Nu-Lovastatin therapy has not been associated with bleeding or with changes in prothrombin time in patients not taking anticoagulants.

Colchicine

Cases of myopathy, including rhabdomyolysis, have been reported with Nu-Lovastatin coadministered with colchicine. See WARNINGS, Myopathy/Rhabdomyolysis.

Ranolazine

The risk of myopathy, including rhabdomyolysis, may be increased by concomitant administration of ranolazine. See WARNINGS, Myopathy/Rhabdomyolysis.

Propranolol

In normal volunteers, there was no clinically significant pharmacokinetic or pharmacodynamic interaction with concomitant administration of single doses of Nu-Lovastatin and propranolol.

Digoxin

In patients with hypercholesterolemia, concomitant administration of Nu-Lovastatin and digoxin resulted in no effect on digoxin plasma concentrations.

Oral Hypoglycemic Agents

In pharmacokinetic studies of Nu-Lovastatin in hypercholesterolemic non-insulin dependent diabetic patients, there was no drug interaction with glipizide or with chlorpropamide.

Endocrine Function

Increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including Nu-Lovastatin.

HMG-CoA reductase inhibitors interfere with cholesterol synthesis and as such might theoretically blunt adrenal and/or gonadal steroid production. Results of clinical trials with drugs in this class have been inconsistent with regard to drug effects on basal and reserve steroid levels. However, clinical studies have shown that Nu-Lovastatin does not reduce basal plasma cortisol concentration or impair adrenal reserve, and does not reduce basal plasma testosterone concentration. Another HMG-CoA reductase inhibitor has been shown to reduce the plasma testosterone response to HCG. In the same study, the mean testosterone response to HCG was slightly but not significantly reduced after treatment with Nu-Lovastatin 40 mg daily for 16 weeks in 21 men. The effects of HMG-CoA reductase inhibitors on male fertility have not been studied in adequate numbers of male patients. The effects, if any, on the pituitary-gonadal axis in pre-menopausal women are unknown. Patients treated with Nu-Lovastatin who develop clinical evidence of endocrine dysfunction should be evaluated appropriately. Caution should also be exercised if an HMG-CoA reductase inhibitor or other agent used to lower cholesterol levels is administered to patients also receiving other drugs (e.g., spironolactone, cimetidine) that may decrease the levels or activity of endogenous steroid hormones.

CNS Toxicity

Nu-Lovastatin produced optic nerve degeneration in clinically normal dogs in a dose-dependent fashion starting at 60 mg/kg/day, a dose that produced mean plasma drug levels about 30 times higher than the mean drug level in humans taking the highest recommended dose (as measured by total enzyme inhibitory activity). Vestibulocochlear Wallerian-like degeneration and retinal ganglion cell chromatolysis were also seen in dogs treated for 14 weeks at 180 mg/kg/day, a dose which resulted in a mean plasma drug level (Cmax) similar to that seen with the 60 mg/kg/day dose.

CNS vascular lesions, characterized by perivascular hemorrhage and edema, mononuclear cell infiltration of perivascular spaces, perivascular fibrin deposits and necrosis of small vessels, were seen in dogs treated with Nu-Lovastatin at a dose of 180 mg/kg/day, a dose which produced plasma drug levels (Cmax) which were about 30 times higher than the mean values in humans taking 80 mg/day.

Similar optic nerve and CNS vascular lesions have been observed with other drugs of this class.

Cataracts were seen in dogs treated for 11 and 28 weeks at 180 mg/kg/day and 1 year at 60 mg/kg/day.

Carcinogenesis, Mutagenesis, Impairment of Fertility

In a 21 month carcinogenic study in mice, there was a statistically significant increase in the incidence of hepatocellular carcinomas and adenomas in both males and females at 500 mg/kg/day. This dose produced a total plasma drug exposure 3 to 4 times that of humans given the highest recommended dose of Nu-Lovastatin (drug exposure was measured as total HMG-CoA reductase inhibitory activity in extracted plasma). Tumor increases were not seen at 20 and 100 mg/kg/day, doses that produced drug exposures of 0.3 to 2 times that of humans at the 80 mg/day dose. A statistically significant increase in pulmonary adenomas was seen in female mice at approximately 4 times the human drug exposure. (Although mice were given 300 times the human dose [HD] on a mg/kg body weight basis, plasma levels of total inhibitory activity were only 4 times higher in mice than in humans given 80 mg of Nu-Lovastatin.)

There was an increase in incidence of papilloma in the non-glandular mucosa of the stomach of mice beginning at exposures of 1 to 2 times that of humans. The glandular mucosa was not affected. The human stomach contains only glandular mucosa.

In a 24 month carcinogenicity study in rats, there was a positive dose response relationship for hepatocellular carcinogenicity in males at drug exposures between 2 to 7 times that of human exposure at 80 mg/day (doses in rats were 5, 30 and 180 mg/kg/day).

An increased incidence of thyroid neoplasms in rats appears to be a response that has been seen with other HMG-CoA reductase inhibitors.

A chemically similar drug in this class was administered to mice for 72 weeks at 25, 100, and 400 mg/kg body weight, which resulted in mean serum drug levels approximately 3, 15, and 33 times higher than the mean human serum drug concentration (as total inhibitory activity) after a 40 mg oral dose. Liver carcinomas were significantly increased in high-dose females and mid- and high-dose males, with a maximum incidence of 90 percent in males. The incidence of adenomas of the liver was significantly increased in mid- and high-dose females. Drug treatment also significantly increased the incidence of lung adenomas in mid- and high-dose males and females. Adenomas of the Harderian gland (a gland of the eye of rodents) were significantly higher in high-dose mice than in controls.

No evidence of mutagenicity was observed in a microbial mutagen test using mutant strains of Salmonella typhimurium with or without rat or mouse liver metabolic activation. In addition, no evidence of damage to genetic material was noted in an in vitro alkaline elution assay using rat or mouse hepatocytes, a V-79 mammalian cell forward mutation study, an in vitro chromosome aberration study in CHO cells, or an in vivo chromosomal aberration assay in mouse bone marrow.

Drug-related testicular atrophy, decreased spermatogenesis, spermatocytic degeneration and giant cell formation were seen in dogs starting at 20 mg/kg/day. Similar findings were seen with another drug in this class. No drug-related effects on fertility were found in studies with Nu-Lovastatin in rats. However, in studies with a similar drug in this class, there was decreased fertility in male rats treated for 34 weeks at 25 mg/kg body weight, although this effect was not observed in a subsequent fertility study when this same dose was administered for 11 weeks (the entire cycle of spermatogenesis, including epididymal maturation). In rats treated with this same reductase inhibitor at 180 mg/kg/day, seminiferous tubule degeneration (necrosis and loss of spermatogenic epithelium) was observed. No microscopic changes were observed in the testes from rats of either study. The clinical significance of these findings is unclear.

Pregnancy

Teratogenic Effects

Pregnancy Category X

See CONTRAINDICATIONS.

Safety in pregnant women has not been established.

Nu-Lovastatin has been shown to produce skeletal malformations in offspring of pregnant mice and rats dosed during gestation at 80 mg/kg/day. Female rats dosed before mating through gestation at 80 mg/kg/day also had fetuses with skeletal malformations (affected fetuses/total: 1/152 compared to 0/171 in the control group). The 80 mg/kg/day dose in mice is 7 times the human dose based on body surface area and in rats results in 5 times the human exposure based on AUC. In pregnant rats given doses of 2, 20, or 200 mg/kg/day and treated through lactation, the following effects were observed: neonatal mortality (4.1%, 3.5%, and 46%, respectively, compared to 0.6% in the control group), decreased pup body weights throughout lactation (up to 5%, 8%, and 38%, respectively, below control), supernumerary ribs in dead pups (affected fetuses/total: 0/7, 1/17, and 11/79, respectively, compared to 0/5 in the control group), delays in ossification in dead pups (affected fetuses/total: 0/7, 0/17, and 1/79, respectively, compared to 0/5 in the control group) and delays in pup development (delays in the appearance of an auditory startle response at 200 mg/kg/day and free-fall righting reflexes at 20 and 200 mg/kg/day).

Direct dosing of neonatal rats by subcutaneous injection with 10 mg/kg/day of the open hydroxyacid form of Nu-Lovastatin resulted in delayed passive avoidance learning in female rats (mean of 8.3 trials to criterion, compared to 7.3 and 6.4 in untreated and vehicle-treated controls; no effects on retention 1 week later) at exposures 4 times the human systemic exposure at 80 mg/day based on AUC. No effect was seen in male rats. No evidence of malformations was observed when pregnant rabbits were given 5 mg/kg/day (doses equivalent to a human dose of 80 mg/day based on body surface area) or a maternally toxic dose of 15 mg/kg/day (3 times the human dose of 80 mg/day based on body surface area).

Rare clinical reports of congenital anomalies following intrauterine exposure to HMG-CoA reductase inhibitors have been received. However, in an analysis3 of greater than 200 prospectively followed pregnancies exposed during the first trimester to Nu-Lovastatin or another closely related HMG-CoA reductase inhibitor, the incidence of congenital anomalies was comparable to that seen in the general population. This number of pregnancies was sufficient to exclude a 3 fold or greater increase in congenital anomalies over the background incidence.

Maternal treatment with Nu-Lovastatin may reduce the fetal levels of mevalonate, which is a precursor of cholesterol biosynthesis. Atherosclerosis is a chronic process, and ordinarily discontinuation of lipid-lowering drugs during pregnancy should have little impact on the long-term risk associated with primary hypercholesterolemia. For these reasons, Nu-Lovastatin should not be used in women who are pregnant, or can become pregnant (see CONTRAINDICATIONS). Nu-Lovastatin should be administered to women of child-bearing potential only when such patients are highly unlikely to conceive and have been informed of the potential hazards. Treatment should be immediately discontinued as soon as pregnancy is recognized.

3 Manson, J.M., Freyssinges, C., Ducrocq, M.B., Stephenson, W.P., Postmarketing Surveillance of Nu-Lovastatin and Simvastatin Exposure During Pregnancy. Reproductive Toxicology. 10(6):439-446. 1996.

Nursing Mothers

It is not known whether Nu-Lovastatin is excreted in human milk. Because a small amount of another drug in this class is excreted in human breast milk and because of the potential for serious adverse reactions in nursing infants, women taking Nu-Lovastatin should not nurse their infants (see CONTRAINDICATIONS).

Pediatric Use

Safety and effectiveness in patients 10 to 17 years of age with heFH have been evaluated in controlled clinical trials of 48 weeks duration in adolescent boys and controlled clinical trials of 24 weeks duration in girls who were at least 1 year post-menarche. Patients treated with Nu-Lovastatin had an adverse experience profile generally similar to that of patients treated with placebo. Doses greater than 40 mg have not been studied in this population. In these limited controlled studies, there was no detectable effect on growth or sexual maturation in the adolescent boys or on menstrual cycle length in girls. See CLINICAL PHARMACOLOGY, Clinical Studies in Adolescent Patients; ADVERSE REACTIONS, Adolescent Patients ; and DOSAGE AND ADMINISTRATION, Adolescent Patients (10 to 17 Years of Age) with Heterozygous Familial Hypercholesterolemia. Adolescent females should be counseled on appropriate contraceptive methods while on Nu-Lovastatin therapy (see CONTRAINDICATIONS and PRECAUTIONS, Pregnancy). Nu-Lovastatin has not been studied in pre-pubertal patients or patients younger than 10 years of age.

Geriatric Use

A pharmacokinetic study with Nu-Lovastatin showed the mean plasma level of HMG-CoA reductase inhibitory activity to be approximately 45% higher in elderly patients between 70 to 78 years of age compared with patients between 18 to 30 years of age; however, clinical study experience in the elderly indicates that dosage adjustment based on this age-related pharmacokinetic difference is not needed. In the two large clinical studies conducted with Nu-Lovastatin (EXCEL and AFCAPS/TexCAPS), 21% (3094/14850) of patients were ≥ 65 years of age. Lipid-lowering efficacy with Nu-Lovastatin was at least as great in elderly patients compared with younger patients, and there were no overall differences in safety over the 20 to 80 mg/day dosage range (see CLINICAL PHARMACOLOGY). Because advanced age (≥65 years) is a predisposing factor for myopathy, including rhabdomyolysis, Nu-Lovastatin should be prescribed with caution in the elderly.

advertisement

ADVERSE REACTIONS

Phase III Clinical Studies

In Phase III controlled clinical studies involving 613 patients treated with Nu-Lovastatin, the adverse experience profile was similar to that shown below for the 8,245 patient EXCEL study.

Persistent increases of serum transaminases have been noted (see WARNINGS, Liver Dysfunction). About 11% of patients had elevations of CK levels of at least twice the normal value on one or more occasions. The corresponding values for the control agent cholestyramine were 9 percent. This was attributable to the noncardiac fraction of CK. Large increases in CK have sometimes been reported (see WARNINGS, Myopathy/Rhabdomyolysis).

Expanded Clinical Evaluation of Nu-Lovastatin (EXCEL) Study

Nu-Lovastatin was compared to placebo in 8,245 patients with hypercholesterolemia (total-C 240 to 300 mg/dL [6.2 to 7.8 mmol/L]) in the randomized, double-blind, parallel, 48 week EXCEL study. Clinical adverse experiences reported as possibly, probably or definitely drug-related in ≥ 1% in any treatment group are shown in the table below. For no event was the incidence on drug and placebo statistically different.

Placebo (N = 1663) % Nu-Lovastatin 20 mg q.p.m.

(N = 1642) %

Nu-Lovastatin 40 mg q.p.m.

(N = 1645) %

Nu-Lovastatin 20 mg b.i.d. (N = 1646) % Nu-Lovastatin

40 mg b.i.d.

(N = 1649)

%

Body As a Whole
Asthenia 1.4 1.7 1.4 1.5 1.2
Gastrointestinal
Abdominal pain 1.6 2.0 2.0 2.2 2.5
Constipation 1.9 2.0 3.2 3.2 3.5
Diarrhea 2.3 2.6 2.4 2.2 2.6
Dyspepsia 1.9 1.3 1.3 1.0 1.6
Flatulence 4.2 3.7 4.3 3.9 4.5
Nausea 2.5 1.9 2.5 2.2 2.2
Musculoskeletal
Muscle cramps 0.5 0.6 0.8 1.1 1.0
Myalgia 1.7 2.6 1.8 2.2 3.0
Nervous System/Psychiatric
Dizziness 0.7 0.7 1.2 0.5 0.5
Headache 2.7 2.6 2.8 2.1 3.2
Skin
Rash 0.7 0.8 1.0 1.2 1.3
Special Senses
Blurred vision 0.8 1.1 0.9 0.9 1.2

Other clinical adverse experiences reported as possibly, probably or definitely drug-related in 0.5 to 1.0 percent of patients in any drug-treated group are listed below. In all these cases the incidence on drug and placebo was not statistically different. Body as a Whole: chest pain; Gastrointestinal: acid regurgitation, dry mouth, vomiting; Musculoskeletal: leg pain, shoulder pain, arthralgia; Nervous System/Psychiatric: insomnia, paresthesia; Skin: alopecia, pruritus; Special Senses: eye irritation.

In the EXCEL study (see CLINICAL PHARMACOLOGY, Clinical Studies in Adults), 4.6% of the patients treated up to 48 weeks were discontinued due to clinical or laboratory adverse experiences which were rated by the investigator as possibly, probably or definitely related to therapy with Nu-Lovastatin. The value for the placebo group was 2.5%.

Air Force/Texas Coronary Atherosclerosis Prevention Study

In AFCAPS/TexCAPS (see CLINICAL PHARMACOLOGY, Clinical Studies in Adults) involving 6,605 participants treated with 20 to 40 mg/day of Nu-Lovastatin (n = 3,304) or placebo (n = 3,301), the safety and tolerability profile of the group treated with Nu-Lovastatin was comparable to that of the group treated with placebo during a median of 5.1 years of follow-up. The adverse experiences reported in AFCAPS/TexCAPS were similar to those reported in EXCEL (see ADVERSE REACTIONS, Expanded Clinical Evaluation of Nu-Lovastatin (EXCEL) Study).

Concomitant Therapy

In controlled clinical studies in which Nu-Lovastatin was administered concomitantly with cholestyramine, no adverse reactions peculiar to this concomitant treatment were observed. The adverse reactions that occurred were limited to those reported previously with Nu-Lovastatin or cholestyramine. Other lipid-lowering agents were not administered concomitantly with Nu-Lovastatin during controlled clinical studies. Preliminary data suggests that the addition of gemfibrozil to therapy with Nu-Lovastatin is not associated with greater reduction in LDL-C than that achieved with Nu-Lovastatin alone. In uncontrolled clinical studies, most of the patients who have developed myopathy were receiving concomitant therapy with cyclosporine, gemfibrozil or niacin. The combined use of Nu-Lovastatin with cyclosporine or gemfibrozil should be avoided. Caution should be used when prescribing other fibrates or lipid-lowering doses (≥ 1 g/day) of niacin with Nu-Lovastatin (see WARNINGS, Myopathy/Rhabdomyolysis).

The following effects have been reported with drugs in this class. Not all the effects listed below have necessarily been associated with Nu-Lovastatin therapy.

Skeletal: muscle cramps, myalgia, myopathy, rhabdomyolysis, arthralgias.

There have been rare reports of immune-mediated necrotizing myopathy associated with statin use (see WARNINGS, Myopathy/Rhabdomyolysis).

Neurological: dysfunction of certain cranial nerves (including alteration of taste, impairment of extra-ocular movement, facial paresis), tremor, dizziness, vertigo, paresthesia, peripheral neuropathy, peripheral nerve palsy, psychic disturbances, anxiety, insomnia, depression.

There have been rare postmarketing reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. These cognitive issues have been reported for all statins. The reports are generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks).

Hypersensitivity Reactions: An apparent hypersensitivity syndrome has been reported rarely which has included one or more of the following features: anaphylaxis, angioedema, lupus erythematous-like syndrome, polymyalgia rheumatica, dermatomyositis, vasculitis, purpura, thrombocytopenia, leukopenia, hemolytic anemia, positive ANA, ESR increase, eosinophilia, arthritis, arthralgia, urticaria, asthenia, photosensitivity, fever, chills, flushing, malaise, dyspnea, toxic epidermal necrolysis, erythema multiforme, including Stevens-Johnson syndrome.

Gastrointestinal: pancreatitis, hepatitis, including chronic active hepatitis, cholestatic jaundice, fatty change in liver; and rarely, cirrhosis, fulminant hepatic necrosis, and hepatoma; anorexia, vomiting, fatal and non-fatal hepatic failure.

Skin: alopecia, pruritus. A variety of skin changes (e.g., nodules, discoloration, dryness of skin/mucous membranes, changes to hair/nails) have been reported.

Reproductive: gynecomastia, loss of libido, erectile dysfunction.

Eye: progression of cataracts (lens opacities), ophthalmoplegia.

Laboratory Abnormalities: elevated transaminases, alkaline phosphatase, γ-glutamyl transpeptidase, and bilirubin; thyroid function abnormalities.

Adolescent Patients (Ages 10 to 17 Years)

In a 48 week controlled study in adolescent boys with heFH (n = 132) and a 24 week controlled study in girls who were at least 1 year post-menarche with heFH (n = 54), the safety and tolerability profile of the groups treated with Nu-Lovastatin (10 to 40 mg daily) was generally similar to that of the groups treated with placebo (see CLINICAL PHARMACOLOGY, Clinical Studies in Adolescent Patients and PRECAUTIONS, Pediatric Use).

OVERDOSAGE

After oral administration of Nu-Lovastatin to mice, the median lethal dose observed was > 15 g/m2.

Five healthy human volunteers have received up to 200 mg of Nu-Lovastatin as a single dose without clinically significant adverse experiences. A few cases of accidental overdosage have been reported; no patients had any specific symptoms, and all patients recovered without sequelae. The maximum dose taken was 5 to 6 g.

Until further experience is obtained, no specific treatment of overdosage with Nu-Lovastatin can be recommended.

The dialyzability of Nu-Lovastatin and its metabolites in man is not known at present.

DOSAGE AND ADMINISTRATION

The patient should be placed on a standard cholesterol-lowering diet before receiving Nu-Lovastatin tablets and should continue on this diet during treatment with Nu-Lovastatin tablets. Nu-Lovastatin tablets should be given with meals.

Adult Patients

The usual recommended starting dose is 20 mg once a day given with the evening meal. The recommended dosing range of Nu-Lovastatin is 10 to 80 mg/day in single or two divided doses; the maximum recommended dose is 80 mg/day. Doses should be individualized according to the recommended goal of therapy (see NCEP Treatment Guidelines and CLINICAL PHARMACOLOGY). Patients requiring reductions in LDL-C of 20% or more to achieve their goal (see INDICATIONS AND USAGE) should be started on 20 mg/day of Nu-Lovastatin tablets. A starting dose of 10 mg of Nu-Lovastatin may be considered for patients requiring smaller reductions. Adjustments should be made at intervals of 4 weeks or more.

Cholesterol levels should be monitored periodically and consideration should be given to reducing the dosage of Nu-Lovastatin tablets if cholesterol levels fall significantly below the targeted range.

Dosage in Patients Taking Danazol, Diltiazem, Dronedarone or Verapamil

In patients taking danazol, diltiazem, dronedarone or verapamil concomitantly with Nu-Lovastatin, therapy should begin with 10 mg of Nu-Lovastatin and should not exceed 20 mg/day.

Dosage in Patients Taking Amiodarone

In patients taking amiodarone concomitantly with Nu-Lovastatin tablets, the dose should not exceed 40 mg/day (see WARNINGS, Myopathy/Rhabdomyolysis and PRECAUTIONS, Drug Interactions, Other Drug Interactions).

Adolescent Patients With Heterozygous Familial Hypercholesterolemia

The recommended dosing range of Nu-Lovastatin is 10 to 40 mg/day; the maximum recommended dose is 40 mg/day. Doses should be individualized according to the recommended goal of therapy (see NCEP Pediatric Panel Guidelines4, CLINICAL PHARMACOLOGY, and INDICATIONS AND USAGE). Patients requiring reductions in LDL-C of 20% or more to achieve their goal should be started on 20 mg/day of Nu-Lovastatin tablets. A starting dose of 10 mg of Nu-Lovastatin may be considered for patients requiring smaller reductions. Adjustments should be made at intervals of 4 weeks or more.

4 National Cholesterol Education Program (NCEP): Highlights of the Report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics. 89(3):495-501. 1992.

Concomitant Lipid-Lowering Therapy

Nu-Lovastatin tablets are effective alone or when used concomitantly with bile-acid sequestrants.

Dosage in Patients With Renal Insufficiency

In patients with severe renal insufficiency (creatinine clearance < 30 mL/min), dosage increases above 20 mg/day should be carefully considered and, if deemed necessary, implemented cautiously (see CLINICAL PHARMACOLOGY and WARNINGS, Myopathy/Rhabdomyolysis).

HOW SUPPLIED

Nu-Lovastatin Tablets USP, 10 mg are available as light peach, unscored, round, flat beveled tablets debossed “926” on one side and “TEVA” on the other side. Packaged in bottles of 60 and 1000.

Nu-Lovastatin Tablets USP, 20 mg are available as light blue, unscored, round, flat beveled tablets, debossed “576” on one side and “TEVA” on the other side. Packaged in bottles of 60 and 1000.

Nu-Lovastatin Tablets USP, 40 mg are available as light green, unscored, round, flat beveled tablets, debossed “928” on one side and “TEVA” on the other side. Packaged in bottles of 60 and 1000.

Store at 20° to 25°C (68° to 77°F). Nu-Lovastatin Tablets USP must be protected from light.

Dispense in a tight, light-resistant container as defined in the USP, with a child-resistant closure (as required).

KEEP THIS AND ALL MEDICATIONS OUT OF THE REACH OF CHILDREN.

Manufactured In Croatia By:

PLIVA HRVATSKA d.o.o.

Zagreb, Croatia

Manufactured For:

TEVA PHARMACEUTICALS USA

Sellersville, PA 18960

Rev. R 3/2014

Nu-Lovastatin 40mg Tablet

Nu-Lovastatin structural formula Figure 1: Actue Major Coronary Events (Primary Endpoint)

Nu-Lovastatin pharmaceutical active ingredients containing related brand and generic drugs:

Active ingredient is the part of the drug or medicine which is biologically active. This portion of the drug is responsible for the main action of the drug which is intended to cure or reduce the symptom or disease. The other portions of the drug which are inactive are called excipients; there role is to act as vehicle or binder. In contrast to active ingredient, the inactive ingredient's role is not significant in the cure or treatment of the disease. There can be one or more active ingredients in a drug.


Nu-Lovastatin available forms, composition, doses:

Form of the medicine is the form in which the medicine is marketed in the market, for example, a medicine X can be in the form of capsule or the form of chewable tablet or the form of tablet. Sometimes same medicine can be available as injection form. Each medicine cannot be in all forms but can be marketed in 1, 2, or 3 forms which the pharmaceutical company decided based on various background research results.
Composition is the list of ingredients which combinedly form a medicine. Both active ingredients and inactive ingredients form the composition. The active ingredient gives the desired therapeutic effect whereas the inactive ingredient helps in making the medicine stable.
Doses are various strengths of the medicine like 10mg, 20mg, 30mg and so on. Each medicine comes in various doses which is decided by the manufacturer, that is, pharmaceutical company. The dose is decided on the severity of the symptom or disease.


Nu-Lovastatin destination | category:

Destination is defined as the organism to which the drug or medicine is targeted. For most of the drugs what we discuss, human is the drug destination.
Drug category can be defined as major classification of the drug. For example, an antihistaminic or an antipyretic or anti anginal or pain killer, anti-inflammatory or so.


Nu-Lovastatin Anatomical Therapeutic Chemical codes:

A medicine is classified depending on the organ or system it acts [Anatomical], based on what result it gives on what disease, symptom [Therapeutical], based on chemical composition [Chemical]. It is called as ATC code. The code is based on Active ingredients of the medicine. A medicine can have different codes as sometimes it acts on different organs for different indications. Same way, different brands with same active ingredients and same indications can have same ATC code.


Nu-Lovastatin pharmaceutical companies:

Pharmaceutical companies are drug manufacturing companies that help in complete development of the drug from the background research to formation, clinical trials, release of the drug into the market and marketing of the drug.
Researchers are the persons who are responsible for the scientific research and is responsible for all the background clinical trials that resulted in the development of the drug.


advertisement

References

  1. Dailymed."LOVASTATIN TABLET [BRYANT RANCH PREPACK]". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  2. Dailymed."LOVASTATIN: DailyMed provides trustworthy information about marketed drugs in the United States. DailyMed is the official provider of FDA label information (package inserts).". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  3. "lovastatin". https://pubchem.ncbi.nlm.nih.gov/co... (accessed August 28, 2018).

Frequently asked Questions

Can i drive or operate heavy machine after consuming Nu-Lovastatin?

Depending on the reaction of the Nu-Lovastatin after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Nu-Lovastatin not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.

Is Nu-Lovastatin addictive or habit forming?

Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.

Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.

advertisement

Review

sdrugs.com conducted a study on Nu-Lovastatin, and the result of the survey is set out below. It is noteworthy that the product of the survey is based on the perception and impressions of the visitors of the website as well as the views of Nu-Lovastatin consumers. We, as a result of this, advice that you do not base your therapeutic or medical decisions on this result, but rather consult your certified medical experts for their recommendations.

Visitor reports

Visitor reported useful

No survey data has been collected yet

Visitor reported side effects

No survey data has been collected yet

Visitor reported price estimates

No survey data has been collected yet

Visitor reported frequency of use

No survey data has been collected yet

Visitor reported doses

No survey data has been collected yet

Visitor reported time for results

No survey data has been collected yet

Visitor reported administration

No survey data has been collected yet

Visitor reported age

No survey data has been collected yet

Visitor reviews


There are no reviews yet. Be the first to write one!


Your name: 
Email: 
Spam protection:  < Type 28 here

The information was verified by Dr. Rachana Salvi, MD Pharmacology

© 2002 - 2024 "sdrugs.com". All Rights Reserved