Glimec

How is the drug helping you?
advertisement

Glimec uses


1 INDICATIONS AND USAGE

Glimec tablets USP are indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus [see Clinical Studies ].

Glimec is a sulfonylurea indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus ( 1.1).

Important Limitations of Use:

1.1 Important Limitations of Use

Glimec tablets USP should not be used for the treatment of type 1 diabetes mellitus or diabetic ketoacidosis, as it would not be effective in these settings.

2 DOSAGE AND ADMINISTRATION

2.1 Recommended Dosing

Glimec tablets should be administered with breakfast or the first main meal of the day.

The recommended starting dose of Glimec tablets is 1 mg or 2 mg once daily. Patients at increased risk for hypoglycemia (e.g., the elderly or patients with renal impairment) should be started on 1 mg once daily [see Warnings and Precautions (5.1) and Use in Specific Populations (8.5 , 8.6) ] .

After reaching a daily dose of 2 mg, further dose increases can be made in increments of 1 mg or 2 mg based upon the patient’s glycemic response. Uptitration should not occur more frequently than every 1 to 2 weeks. A conservative titration scheme is recommended for patients at increased risk for hypoglycemia [see Warnings and Precautions (5.1) and Use in Specific Populations (8.5, 8.6) ].

The maximum recommended dose is 8 mg once daily.

Patients being transferred to Glimec tablets from longer half-life sulfonylureas (e.g., chlorpropamide) may have overlapping drug effect for 1 to 2 weeks and should be appropriately monitored for hypoglycemia.

When colesevelam is coadministered with Glimec, maximum plasma concentration and total exposure to Glimec is reduced. Therefore, Glimec tablets should be administered at least 4 hours prior to colesevelam.

advertisement

3 DOSAGE FORMS AND STRENGTHS

Glimec is formulated as tablets of:


Tablets (scored): 1 mg, 2 mg, 3 mg, 4 mg, 6 mg and 8 mg ( 3)

4 CONTRAINDICATIONS

Glimec tablets are contraindicated in patients with a history of a hypersensitivity reaction to:


Sulfonamide derivatives: Patients who have developed an allergic reaction to sulfonamide derivatives may develop an allergic reaction to Glimec. Do not use Glimec in patients who have a history of an allergic reaction to sulfonamide derivatives.

Reported hypersensitivity reactions include cutaneous eruptions with or without pruritus as well as more serious reactions (e.g., anaphylaxis, angioedema, Stevens-Johnson Syndrome, dyspnea) [see Warnings and Precautions (5.2) and Adverse Reactions (6.2) ].

advertisement

5 WARNINGS AND PRECAUTIONS

5.1 Hypoglycemia

All sulfonylureas, including Glimec, can cause severe hypoglycemia [see Adverse Reactions (6.1) ]. The patient's ability to concentrate and react may be impaired as a result of hypoglycemia. These impairments may present a risk in situations where these abilities are especially important, such as driving or operating other machinery. Severe hypoglycemia can lead to unconsciousness or convulsions and may result in temporary or permanent impairment of brain function or death.

Patients must be educated to recognize and manage hypoglycemia. Use caution when initiating and increasing Glimec doses in patients who may be predisposed to hypoglycemia (e.g., the elderly, patients with renal impairment, patients on other anti-diabetic medications). Debilitated or malnourished patients, and those with adrenal, pituitary, or hepatic impairment are particularly susceptible to the hypoglycemic action of glucose-lowering medications. Hypoglycemia is also more likely to occur when caloric intake is deficient, after severe or prolonged exercise, or when alcohol is ingested.

Early warning symptoms of hypoglycemia may be different or less pronounced in patients with autonomic neuropathy, the elderly, and in patients who are taking beta-adrenergic blocking medications or other sympatholytic agents. These situations may result in severe hypoglycemia before the patient is aware of the hypoglycemia.

5.2 Hypersensitivity Reactions

There have been postmarketing reports of hypersensitivity reactions in patients treated with Glimec, including serious reactions such as anaphylaxis, angioedema, and Stevens-Johnson Syndrome. If a hypersensitivity reaction is suspected, promptly discontinue Glimec, assess for other potential causes for the reaction, and institute alternative treatment for diabetes.

5.3 Hemolytic Anemia

Sulfonylureas can cause hemolytic anemia in patients with glucose 6-phosphate dehydrogenase deficiency. Because Glimec is a sulfonylurea, use caution in patients with G6PD deficiency and consider the use of a non-sulfonylurea alternative.


There are also postmarketing reports of hemolytic anemia in patients receiving Glimec who did not have known G6PD deficiency [see Adverse Reactions (6.2) ].

5.4 Increased Risk of Cardiovascular Mortality with Sulfonylureas

The administration of oral hypoglycemic drugs has been reported to be associated with increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin. This warning is based on the study conducted by the University Group Diabetes Program (UGDP), a long-term, prospective clinical trial designed to evaluate the effectiveness of glucose-lowering drugs in preventing or delaying vascular complications in patients with non-insulin-dependent diabetes. The study involved 823 patients who were randomly assigned to one of four treatment groups.

UGDP reported that patients treated for 5 to 8 years with diet plus a fixed dose of tolbutamide (1.5 grams per day) had a rate of cardiovascular mortality approximately 2 to 1/2 times that of patients treated with diet alone. A significant increase in total mortality was not observed, but the use of tolbutamide was discontinued based on the increase in cardiovascular mortality, thus limiting the opportunity for the study to show an increase in overall mortality. Despite controversy regarding the interpretation of these results, the findings of the UGDP study provide an adequate basis for this warning. The patient should be informed of the potential risks and advantages of Glimec and of alternative modes of therapy.

Although only one drug in the sulfonylurea class (tolbutamide) was included in this study, it is prudent from a safety standpoint to consider that this warning may also apply to other oral hypoglycemic drugs in this class, in view of their close similarities in mode of action and chemical structure.

5.5 Macrovascular Outcomes

There have been no clinical studies establishing conclusive evidence of macrovascular risk reduction with Glimec or any other anti-diabetic drug.

advertisement

6 ADVERSE REACTIONS

The following serious adverse reactions are discussed in more detail below and elsewhere in the labeling:


In clinical trials, the most common adverse reactions with Glimec were hypoglycemia, dizziness, asthenia, headache, and nausea.

Common adverse reactions in clinical trials (≥5% and more common than with placebo) include hypoglycemia, headache, nausea, and dizziness


( 6.1).

To report SUSPECTED ADVERSE REACTIONS, contact Micro Labs USA, Inc. at 1-855-839-8195 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

6.1 Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Approximately 2,800 patients with type 2 diabetes have been treated with Glimec in the controlled clinical trials. In these trials, approximately 1,700 patients were treated with Glimec for at least 1 year.

Table 1 summarizes adverse events, other than hypoglycemia, that were reported in 11 pooled placebo-controlled trials, whether or not considered to be possibly or probably related to study medication. Treatment duration ranged from 13 weeks to 12 months. Terms that are reported represent those that occurred at an incidence of ≥5% among glimepiride-treated patients and more commonly than in patients who received placebo.

Table 1. Eleven Pooled Placebo-Controlled Trials ranging from 13 weeks to 12 months: Adverse Events (Excluding Hypoglycemia) Occurring in ≥5% of Glimepiride-treated Patients and at a Greater Incidence than with Placebo *


Glimec N=745 %

Placebo N=294 %

Headache

8.2

7.8

Accidental Injury

5.8

3.4

Flu Syndrome

5.4

4.4

Nausea

5

3.4

Dizziness

5

2.4

* Glimec doses ranged from 1 to 16 mg administered daily

Insufficient information to determine whether any of the accidental injury events were associated with hypoglycemia


Hypoglycemia:

In a randomized, double-blind, placebo-controlled monotherapy trial of 14 weeks duration, patients already on sulfonylurea therapy underwent a 3-week washout period then were randomized to Glimec 1 mg, 4 mg, 8 mg or placebo. Patients randomized to Glimec 4 mg or 8 mg underwent forced-titration from an initial dose of 1 mg to these final doses, as tolerated . The overall incidence of possible hypoglycemia (defined by the presence of at least one symptom that the investigator believed might be related to hypoglycemia; a concurrent glucose measurement was not required) was 4% for Glimec 1 mg, 17% for Glimec 4 mg, 16% for Glimec 8 mg and 0% for placebo. All of these events were self-treated.

In a randomized, double-blind, placebo-controlled monotherapy trial of 22 weeks duration, patients received a starting dose of either 1 mg Glimec or placebo daily. The dose of Glimec was titrated to a target fasting plasma glucose of 90 to 150 mg/dL. Final daily doses of Glimec were 1, 2, 3, 4, 6 or 8 mg . The overall incidence of possible hypoglycemia (as defined above for the 14-week trial) for Glimec vs. placebo was 19.7% vs. 3.2%. All of these events were self-treated.

Weight gain: Glimec, like all sulfonylureas, can cause weight gain [see Clinical Studies (14.1) ].

Allergic Reactions: In clinical trials, allergic reactions, such as pruritus, erythema, urticaria, and morbilliform or maculopapular eruptions, occurred in less than 1% of glimepiride-treated patients. These may resolve despite continued treatment with Glimec. There are postmarketing reports of more serious allergic reactions (e.g., dyspnea, hypotension, shock) [see Warnings and Precautions (5.2) ].

Laboratory Tests:

Elevated Serum Alanine Aminotransferase (ALT): In 11 pooled placebo-controlled trials of Glimec, 1.9% of glimepiride-treated patients and 0.8% of placebo-treated patients developed serum ALT greater than 2 times the upper limit of the reference range.

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of Glimec. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

advertisement

7 DRUG INTERACTIONS

7.1 Drugs Affecting Glucose Metabolism

A number of medications affect glucose metabolism and may require Glimec dose adjustment and particularly close monitoring for hypoglycemia or worsening glycemic control.

The following are examples of medications that may increase the glucose-lowering effect of sulfonylureas including Glimec, increasing the susceptibility to and/or intensity of hypoglycemia: oral anti-diabetic medications, pramlintide acetate, insulin, angiotensin converting enzyme (ACE) inhibitors, H 2 receptor antagonists, fibrates, propoxyphene, pentoxifylline, somatostatin analogs, anabolic steroids and androgens, cyclophosphamide, phenyramidol, guanethidine, fluconazole, sulfinpyrazone, tetracyclines, clarithromycin, disopyramide, quinolones, and those drugs that are highly protein-bound, such as fluoxetine, nonsteroidal anti-inflammatory drugs, salicylates, sulfonamides, chloramphenicol, coumarins, probenecid and monoamine oxidase inhibitors. When these medications are administered to a patient receiving Glimec, monitor the patient closely for hypoglycemia. When these medications are withdrawn from a patient receiving Glimec, monitor the patient closely for worsening glycemic control.

The following are examples of medications that may reduce the glucose-lowering effect of sulfonylureas including Glimec, leading to worsening glycemic control: danazol, glucagon, somatropin, protease inhibitors, atypical antipsychotic medications (e.g., olanzapine and clozapine), barbiturates, diazoxide, laxatives, rifampin, thiazides and other diuretics, corticosteroids, phenothiazines, thyroid hormones, estrogens, oral contraceptives, phenytoin, nicotinic acid, sympathomimetics (e.g., epinephrine, albuterol, terbutaline), and isoniazid. When these medications are administered to a patient receiving Glimec, monitor the patient closely for worsening glycemic control. When these medications are withdrawn from a patient receiving Glimec, monitor the patient closely for hypoglycemia.

Beta-blockers, clonidine, and reserpine may lead to either potentiation or weakening of glimepiride’s glucose-lowering effect.

Both acute and chronic alcohol intake may potentiate or weaken the glucose-lowering action of Glimec in an unpredictable fashion.

The signs of hypoglycemia may be reduced or absent in patients taking sympatholytic drugs such as beta-blockers, clonidine, guanethidine, and reserpine.

7.2 Miconazole

A potential interaction between oral miconazole and sulfonylureas leading to severe hypoglycemia has been reported. Whether this interaction also occurs with other dosage forms of miconazole is not known.

7.3 Cytochrome P450 2C9 Interactions

There may be an interaction between Glimec and inhibitors and inducers (e.g., rifampin) of cytochrome P450 2C9. Fluconazole may inhibit the metabolism of Glimec, causing increased plasma concentrations of Glimec which may lead to hypoglycemia. Rifampin may induce the metabolism of Glimec, causing decreased plasma concentrations of Glimec which may lead to worsening glycemic control.

7.4 Concomitant Administration of Colesevelam

Colesevelam can reduce the maximum plasma concentration and total exposure of Glimec when the two are coadministered. However, absorption is not reduced when Glimec is administered 4 hours prior to colesevslam. Therefore, Glimec should be administered at least 4 hours prior to colesevelam.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C

There are no adequate and well-controlled studies of Glimec in pregnant women. In animal studies there was no increase in congenital anomalies, but an increase in fetal deaths occurred in rats and rabbits at Glimec doses 50 times (rats) and 0.1 times (rabbits) the maximum recommended human dose (based on body surface area). This fetotoxicity, observed only at doses inducing maternal hypoglycemia, is believed to be directly related to the pharmacologic (hypoglycemic) action of Glimec and has been similarly noted with other sulfonylureas. Glimec should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Because data suggest that abnormal blood glucose during pregnancy is associated with a higher incidence of congenital abnormalities, diabetes treatment during pregnancy should maintain blood glucose as close to normal as possible.

Nonteratogenic Effects: Prolonged severe hypoglycemia (4 to 10 days) has been reported in neonates born to mothers receiving a sulfonylurea at the time of delivery.

8.3 Nursing Mothers

It is not known whether Glimec is excreted in human milk. During pre- and post-natal studies in rats, significant concentrations of Glimec were present in breast milk and the serum of the pups. Offspring of rats exposed to high levels of Glimec during pregnancy and lactation developed skeletal deformities consisting of shortening, thickening, and bending of the humerus during the postnatal period. These skeletal deformations were determined to be the result of nursing from mothers exposed to Glimec. Based on these animal data and the potential for hypoglycemia in a nursing infant, a decision should be made whether to discontinue nursing or discontinue Glimec, taking into account the importance of Glimec to the mother.

8.4 Pediatric Use

The pharmacokinetics, efficacy and safety of Glimec have been evaluated in pediatric patients with type 2 diabetes as described below. Glimec is not recommended in pediatric patients because of its adverse effects on body weight and hypoglycemia.

The pharmacokinetics of a 1 mg single dose of Glimec was evaluated in 30 patients with type 2 diabetes between ages 10 and 17 years. The mean (± SD) AUC (0 to last) (339±203 ng -hr/mL), C max (102±48 ng/mL) and t 1/2 (3.1±1.7 hours) for Glimec were comparable to historical data from adults (AUC (0 to last) 315±96 ng -hr/mL, C max 103±34 ng/mL and t 1/2 5.3±4.1 hours).

The safety and efficacy of Glimec in pediatric patients was evaluated in a single-blind, 24-week trial that randomized 272 patients (8 to 17 years of age) with type 2 diabetes to Glimec (n=135) or metformin (n=137). Both treatment-naïve patients (those treated with only diet and exercise for at least 2 weeks prior to randomization) and previously treated patients (those previously treated or currently treated with other oral antidiabetic medications for at least 3 months) were eligible to participate. Patients who were receiving oral antidiabetic agents at the time of study entry discontinued these medications before randomization without a washout period. Glimec was initiated at 1 mg, and then titrated up to 2, 4 or 8 mg (mean last dose 4 mg) through Week 12, targeting a self-monitored fasting fingerstick blood glucose <126 mg/dL. Metformin was initiated at 500 mg twice daily and titrated at Week 12 up to 1000 mg twice daily (mean last dose 1365 mg).

After 24 weeks, the overall mean treatment difference in HbA1c between Glimec and metformin was 0.2%, favoring metformin (95% confidence interval -0.3% to +0.6%). Based on these results, the trial did not meet its primary objective of showing a similar reduction in HbA1c with Glimec compared to metformin.

Table 2. Change from Baseline in HbA 1C and Body Weight in Pediatric Patients Taking Glimec or Metformin


Metformin

Glimec

Treatment-Naïve Patients *

N=69

N=72

HbA 1C (%)


Baseline (mean)

8.2

8.3

Change from baseline (adjusted LS mean) +

-1.2

-1

Adjusted Treatment Difference ** (95%CI)

0.2 (-0.3; 0.6)


Previously Treated Patients *

N=57

N=55

HbA 1C (%)



Baseline (mean)

9

8.7

Change from baseline (adjusted LS mean) +

-0.2

0.2

Adjusted Treatment Difference ** (95%CI)

0.4 (-0.4; 1.2)

Body Weight (kg) *

N=126

N=129

Baseline (mean)

67.3

66.5

Change from baseline (adjusted LS mean) +

0.7

2

Adjusted Treatment Difference ** (95% CI)

1.3 (0.3; 2.3)


* Intent-to-treat population using last-observation-carried-forward for missing data (glimepiride, n=127; metformin, n=126)

+ adjusted for baseline HbA 1c and Tanner Stage

** Difference is Glimec – metformin with positive differences favoring metformin


The profile of adverse reactions in pediatric patients treated with Glimec was similar to that observed in adults [see Adverse Reactions (6) ].

Hypoglycemic events documented by blood glucose values <36 mg/dL were observed in 4% of pediatric patients treated with Glimec and in 1% of pediatric patients treated with metformin. One patient in each treatment group experienced a severe hypoglycemic episode (severity was determined by the investigator based on observed signs and symptoms).

8.5 Geriatric Use

In clinical trials of Glimec, 1053 of 3491 patients (30%) were >65 years of age. No overall differences in safety or effectiveness were observed between these patients and younger patients, but greater sensitivity of some older individuals cannot be ruled out.

There were no significant differences in Glimec pharmacokinetics between patients with type 2 diabetes ­ ≤65 years (n=49) and those >65 years (n=42) [see Clinical Pharmacology (12.3) ].


Glimec is substantially excreted by the kidney. Elderly patients are more likely to have renal impairment. In addition, hypoglycemia may be difficult to recognize in the elderly [see Dosage and Administration (2.1) and Warnings and Precautions (5.1) ] . Use caution when initiating Glimec and increasing the dose of Glimec in this patient population.

8.6 Renal Impairment

To minimize the risk of hypoglycemia, the recommended starting dose of Glimec is 1 mg daily for all patients with type 2 diabetes and renal impairment [see Dosage and Administration (2.1) and Warnings and Precautions (5.1) ] .

A multiple-dose titration study was conducted in 16 patients with type 2 diabetes and renal impairment using doses ranging from 1 mg to 8 mg daily for 3 months. Baseline creatinine clearance ranged from 10 to 60 mL/min. The pharmacokinetics of Glimec were evaluated in the multiple-dose titration study and the results were consistent with those observed in patients enrolled in a single-dose study. In both studies, the relative total clearance of Glimec increased when kidney function was impaired. Both studies also demonstrated that the elimination of the two major metabolites was reduced in patients with renal impairment [see Clinical Pharmacology (12.3) ].

10 OVERDOSAGE

An overdosage of Glimec, as with other sulfonylureas, can produce severe hypoglycemia. Mild episodes of hypoglycemia can be treated with oral glucose. Severe hypoglycemic reactions constitute medical emergencies requiring immediate treatment. Severe hypoglycemia with coma, seizure, or neurological impairment can be treated with glucagon or intravenous glucose. Continued observation and additional carbohydrate intake may be necessary because hypoglycemia may recur after apparent clinical recovery [see Warnings and Precautions (5.1) ].

11 DESCRIPTION

Glimepiride tablets, USP are an oral sulfonylurea that contains the active ingredient Glimec. Chemically, Glimec is identified as 1-[[p-[2-(3-ethyl-4-methyl-2-oxo-3-pyrroline-1-carboxamido) ethyl]phenyl]sulfonyl]-3-(trans-4-methylcyclohexyl)urea (C 24H 34N 4O 5S) with a molecular weight of 490.62. Glimec USP is a white to almost white, crystalline, odorless to practically odorless powder and is practically insoluble in water.

The structural formula is:

Glimepiride tablets, USP contain the active ingredient Glimec and the following inactive ingredients: lactose monohydrate, magnesium stearate, microcrystalline cellulose, povidone, sodium lauryl sulfate and sodium starch glycolate. In addition, Glimec 1 mg tablets contain Ferric Oxide Red, Glimec 2 mg tablets contain FD&C Blue #2 Indigo carmine Lake and Ferric Oxide Yellow, Glimec 3 mg tablets contain Ferric Oxide Yellow, Glimec 4 mg tablets contain FD&C Blue #2 Indigo carmine Lake and Glimec 6 mg tablets contain Ferric Oxide Red.

Glimec structure

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Glimec primarily lowers blood glucose by stimulating the release of insulin from pancreatic beta cells. Sulfonylureas bind to the sulfonylurea receptor in the pancreatic beta-cell plasma membrane, leading to closure of the ATP-sensitive potassium channel, thereby stimulating the release of insulin.

12.2 Pharmacodynamics

In healthy subjects, the time to reach maximal effect was approximately 2 to 3 hours after single oral doses of Glimec. The effects of Glimec on HbA 1c, fasting plasma glucose, and post-prandial glucose have been assessed in clinical trials .

12.3 Pharmacokinetics

Absorption: Studies with single oral doses of Glimec in healthy subjects and with multiple oral doses in patients with type 2 diabetes showed peak drug concentrations (C max) 2 to 3 hours post-dose. When Glimec was given with meals, the mean C max and AUC (area under the curve) were decreased by 8% and 9%, respectively.

Glimec does not accumulate in serum following multiple dosing. The pharmacokinetics of Glimec does not differ between healthy subjects and patients with type 2 diabetes. Clearance of Glimec after oral administration does not change over the 1 mg to 8 mg dose range, indicating linear pharmacokinetics.

In healthy subjects, the intra- and inter-individual variabilities of Glimec pharmacokinetic parameters were 15 to 23% and 24 to 29%, respectively.

Distribution: After intravenous dosing in healthy subjects, the volume of distribution (Vd) was 8.8 L (113 mL/kg), and the total body clearance (CL) was 47.8 mL/min. Protein binding was greater than 99.5%.

Metabolism: Glimec is completely metabolized by oxidative biotransformation after either an intravenous or oral dose. The major metabolites are the cyclohexyl hydroxy methyl derivative (M1) and the carboxyl derivative (M2). Cytochrome P450 2C9 is involved in the biotransformation of Glimec to M1. M1 is further metabolized to M2 by one or several cytosolic enzymes. M2 is inactive. In animals, M1 possesses about one-third of the pharmacological activity of Glimec, but it is unclear whether M1 results in clinically meaningful effects on blood glucose in humans.

Excretion: When 14C-glimepiride was given orally to 3 healthy male subjects, approximately 60% of the total radioactivity was recovered in the urine in 7 days. M1 and M2 accounted for 80 to 90% of the radioactivity recovered in the urine. The ratio of M1 to M2 in the urine was approximately 3:2 in two subjects and 4:1 in one subject. Approximately 40% of the total radioactivity was recovered in feces. M1 and M2 accounted for about 70% (ratio of M1 to M2 was 1:3) of the radioactivity recovered in feces. No parent drug was recovered from urine or feces. After intravenous dosing in patients, no significant biliary excretion of Glimec or its M1 metabolite was observed.

Geriatric Patients: A comparison of Glimec pharmacokinetics in patients with type 2 diabetes ≤65 years and those >65 years was evaluated in a multiple-dose study using Glimec 6 mg daily. There were no significant differences in Glimec pharmacokinetics between the two age groups. The mean AUC at steady state for the older patients was approximately 13% lower than that for the younger patients; the mean weight-adjusted clearance for the older patients was approximately 11% higher than that for the younger patients.

Gender: There were no differences between males and females in the pharmacokinetics of Glimec when adjustment was made for differences in body weight.

Race: No studies have been conducted to assess the effects of race on Glimec pharmacokinetics but in placebo-controlled trials of Glimec in patients with type 2 diabetes, the reduction in HbA 1C was comparable in Caucasians (n = 536), blacks (n = 63), and Hispanics (n = 63).

Renal Impairment: A single-dose, open-label study Glimec 3 mg was administered to patients with mild, moderate and severe renal impairment as estimated by creatinine clearance (CLcr): Group I consisted of 5 patients with mild renal impairment (CLcr > 50 mL/min), Group II consisted of 3 patients with moderate renal impairment (CLcr = 20 to 50 mL/min) and Group III consisted of 7 patients with severe renal impairment (CLcr < 20 mL/min). Although, Glimec serum concentrations decreased with decreasing renal function, Group III had a 2.3-fold higher mean AUC for M1 and an 8.6-fold higher mean AUC for M2 compared to corresponding mean AUCs in Group I. The apparent terminal half-life (T 1/2) for Glimec did not change, while the half-lives for M1 and M2 increased as renal function decreased. Mean urinary excretion of M1 plus M2 as a percentage of dose decreased from 44.4% for Group I to 21.9% for Group II and 9.3% for Group III.

Hepatic Impairment: It is unknown whether there is an effect of hepatic impairment on Glimec pharmacokinetics because the pharmacokinetics of Glimec has not been adequately evaluated in patients with hepatic impairment.

Obese Patients: The pharmacokinetics of Glimec and its metabolites were measured in a single-dose study involving 28 patients with type 2 diabetes who either had normal body weight or were morbidly obese. While the t max, clearance, and volume of distribution of Glimec in the morbidly obese patients were similar to those in the normal weight group, the morbidly obese had lower C max and AUC than those of normal body weight. The mean C max, AUC 0 to 24, AUC 0 to ∞ values of Glimec in normal vs. morbidly obese patients were 547 ± 218 ng/mL vs. 410 ± 124 ng/mL, 3210 ± 1030 hours·ng/mL vs. 2820 ± 1110 hours·ng/mL and 4000 ± 1320 hours·ng/mL vs. 3280 ± 1360 hours·ng/mL, respectively.

Drug Interactions:

Aspirin : In a randomized, double-blind, two-period, crossover study, healthy subjects were given either placebo or aspirin 1 gram three times daily for a total treatment period of 5 days. On Day 4 of each study period, a single 1 mg dose of Glimec was administered. The Glimec doses were separated by a 14-day washout period. Co-administration of aspirin and Glimec resulted in a 34% decrease in the mean Glimec AUC and a 4% decrease in the mean Glimec C max.

Colesevelam: Conconmitant administration of colesevelam and Glimec resulted in reductions in Glimec AUC 0to∞ and C max of 18% and 8%, respectively. When Glimec was administered 4 hours prior to colesevelam, there was no significant change in Glimec AUC 0to∞ or C max, -6% and 3%, respectively [ see Dosage and Administration (2.1) and Drug Interactions (7.4)].

Cimetidine and Ranitidine : In a randomized, open-label, 3-way crossover study, healthy subjects received either a single 4 mg dose of Glimec alone, Glimec with ranitidine (150 mg twice daily for 4 days; Glimec was administered on Day 3), or Glimec with cimetidine (800 mg daily for 4 days; Glimec was administered on Day 3). Co-administration of cimetidine or ranitidine with a single 4 mg oral dose of Glimec did not significantly alter the absorption and disposition of Glimec.

Propranolol : In a randomized, double-blind, two-period, crossover study, healthy subjects were given either placebo or propranolol 40 mg three times daily for a total treatment period of 5 days. On Day 4 or each study period, a single 2 mg dose of Glimec was administered. The Glimec doses were separated by a 14-day washout period. Concomitant administration of propranolol and Glimec significantly increased Glimec C max, AUC, and T 1/2 by 23%, 22%, and 15%, respectively, and decreased Glimec CL/f by 18%. The recovery of M1 and M2 from urine was not changed.


Warfarin: In an open-label, two-way, crossover study, healthy subjects received 4 mg of Glimec daily for 10 days. Single 25 mg doses of warfarin were administered 6 days before starting Glimec and on Day 4 of Glimec administration. The concomitant administration of Glimec did not alter the pharmacokinetics of R- and S-warfarin enantiomers. No changes were observed in warfarin plasma protein binding. Glimec resulted in a statistically significant decrease in the pharmacodynamic response to warfarin. The reductions in mean area under the prothrombin time (PT) curve and maximum PT values during Glimec treatment were 3.3% and 9.9%, respectively, and are unlikely to be clinically relevant.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, and Impairment of Fertility

Studies in rats at doses of up to 5000 parts per million (ppm) in complete feed (approximately 340 times the maximum recommended human dose, based on surface area) for 30 months showed no evidence of carcinogenesis. In mice, administration of Glimec for 24 months resulted in an increase in benign pancreatic adenoma formation that was dose-related and was thought to be the result of chronic pancreatic stimulation. No adenoma formation in mice was observed at a dose of 320 ppm in complete feed, or 46 to 54 mg/kg body weight/day. This is about 35 times the maximum human recommended dose of 8 mg once daily based on surface area.

Glimec was non-mutagenic in a battery of in vitro and in vivo mutagenicity studies (Ames test, somatic cell mutation, chromosomal aberration, unscheduled DNA synthesis, and mouse micronucleus test).


There was no effect of Glimec on male mouse fertility in animals exposed up to 2500 mg/kg body weight (>1,700 times the maximum recommended human dose based on surface area). Glimec had no effect on the fertility of male and female rats administered up to 4000 mg/kg body weight (approximately 4,000 times the maximum recommended human dose based on surface area).

14 CLINICAL STUDIES

14.1 Monotherapy

A total of 304 patients with type 2 diabetes already treated with sulfonylurea therapy participated in a 14-week, multicenter, randomized, double-blind, placebo-controlled trial evaluating the safety and efficacy of Glimec monotherapy. Patients discontinued their sulfonylurea therapy then entered a 3-week placebo washout period followed by randomization into 1 of 4 treatment groups: placebo (n=74), Glimec 1 mg (n=78), Glimec 4 mg (n=76) and Glimec 8 mg (n=76). All patients randomized to Glimec started 1 mg daily. Patients randomized to Glimec 4 mg or 8 mg had blinded, forced titration of the Glimec dose at weekly intervals, first to 4 mg and then to 8 mg, as long as the dose was tolerated, until the randomized dose was reached. Patients randomized to the 4 mg dose reached the assigned dose at Week 2. Patients randomized to the 8 mg dose reached the assigned dose at Week 3. Once the randomized dose level was reached, patients were to be maintained at that dose until Week 14. Approximately 66% of the placebo-treated patients completed the trial compared to 81% of patients treated with Glimec 1 mg and 92% of patients treated with Glimec 4 mg or 8 mg. Compared to placebo, treatment with Glimec 1 mg, 4 mg and 8 mg daily provided statistically significant improvements in HbA 1C compared to placebo (Table 3).


Table 3. 14-week Monotherapy Trial Comparing Glimec to Placebo in Patients Previously Treated With Sulfonylurea Therapy a



Placebo (N=74)


Glimec


1 mg (N=78)


4 mg (N=76)


8 mg (N=76)


HbA 1C (%)




n=59


n=65


n=65


n=68


Baseline (mean)


8


7.9


7.9


8


Change from Baseline (adjusted mean b)


1.5


0.3


-0.3


-0.4


Difference from Placebo (adjusted mean b) 95% confidence interval



-1.2 * (-1.5, -0.8)


-1.8 * (-2.1, -1.4)


1.8 * (-2.2, -1.5)


Mean Baseline Weight (kg)




n=67


n=76


n=75


n=73


Baseline (mean)


85.7


84.3


86.1


85.5


Change from Baseline (adjusted mean b)


-2.3


-0.2


0.5


1


Difference from Placebo (adjusted mean b) 95% confidence interval



2 * (1.4, 2.7)


2.8 * (2.1, 3.5)


3.2 * (2.5, 4)


a Intent-to-treat population using last observation on study

b Least squares mean adjusted for baseline value

*p≤0.001


A total of 249 patients who were treatment-naïve or who had received limited treatment with antidiabetic therapy in the past were randomized to receive 22 weeks of treatment with either Glimec (n=123) or placebo (n=126) in a multicenter, randomized, double-blind, placebo-controlled, dose-titration trial. The starting dose of Glimec was 1 mg daily and was titrated upward or downward at 2-week intervals to a goal FPG of 90 to 150 mg/dL. Blood glucose levels for both FPG and PPG were analyzed in the laboratory. Following 10 weeks of dose adjustment, patients were maintained at their optimal dose (1, 2, 3, 4, 6 or 8 mg) for the remaining 12 weeks of the trial. Treatment with Glimec provided statistically significant improvements in HbA 1C and FPG compared to placebo (Table 4).

Table 4. 22-Week Monotherapy Trial Comparing Glimec to Placebo in Patients Who Were Treatment-Naïve or Who Had No Recent Treatment with Antidiabetic Therapy a


Placebo (N=126)

Glimec (N=123)

HbA 1C (%)

n=97

n=106

Baseline (mean)

9.1

9.3

Change from Baseline (adjusted mean b)

-1.1 *

-2.2 *


Difference from Placebo (adjusted mean b)

95% confidence interval

-1.1 * (-1.5, -0.8)

Body Weight (kg)



n=122

n=119

Baseline (mean)

86.5

87.1

Change from Baseline (adjusted mean b)

-0.9

1.8


Difference from Placebo (adjusted mean b)

95% confidence interval

2.7 (1.9, 3.6)


a Intent to treat population using last observation on study

b Least squares mean adjusted for baseline value

*p≤0.0001

16 HOW SUPPLIED/STORAGE AND HANDLING

Glimec Tablets USP are available in the following strengths and package sizes:


Bottles of 100 (NDC 42571-100-01)

Bottles of 500 (NDC 42571-100-05)


Bottles of 100 (NDC 42571-101-01)

Bottles of 500 (NDC 42571-101-05)


Bottles of 100 (NDC 42571-102-01)

Bottles of 500 (NDC 42571-102-05)


Bottles of 100 (NDC 42571-103-01)

Bottles of 500 (NDC 42571-103-05)


Bottles of 100 (NDC 42571-104-01)

Bottles of 500 (NDC 42571-104-05)


Bottles of 100 (NDC 42571-105-01)

Bottles of 500 (NDC 42571-105-05)

Store at 20° to 25°C (68° to 77°F)

Dispense in well-closed containers with safety closures.

17 PATIENT COUNSELING INFORMATION

17.1 Information for Patients

Inform patients about the importance of adherence to dietary instructions, of a regular exercise program, and of regular testing of blood glucose.

Inform patients about the potential side effects of Glimec including hypoglycemia and weight gain.

Explain the symptoms and treatment of hypoglycemia as well as conditions that predispose to hypoglycemia. Patients should be informed that the ability to concentrate and react may be impaired as a result of hypoglycemia. This may present a risk in situations where these abilities are especially important, such as driving or operating other machinery.

Patients with diabetes should be advised to inform their healthcare provider if they are pregnant, contemplating pregnancy, breastfeeding, or contemplating breastfeeding.

Made in India


Manufactured for:

Micro Labs USA Inc.

Princeton, NJ 08540


Revised: 12/2016

Micro Labs Limited Container Labels

NDC 42571-100-01

Glimec

TABLETS, USP

1 mg

ONCE A DAY

Rx Only

100 Tablets

NDC 42571-101-01

Glimec

TABLETS, USP

2 mg

ONCE A DAY

Rx Only

100 Tablets


NDC 42571-102-01

Glimec

TABLETS, USP

3 mg

ONCE A DAY

Rx Only

100 Tablets


NDC 42571-103-01

Glimec

TABLETS, USP

4 mg

ONCE A DAY

Rx Only

100 Tablets


NDC 42571-104-01

Glimec

TABLETS, USP

6 mg

ONCE A DAY

Rx Only

100 Tablets


NDC 42571-105-01

Glimec

TABLETS, USP

8 mg

ONCE A DAY

Rx Only

100 Tablets

RA CHEM PHARMA LIMITED Container Labels


NDC 42571-100-01

Glimec

TABLETS, USP

1 mg

ONCE A DAY

Rx Only

100 Tablets



NDC 42571-101-01

Glimec

TABLETS, USP

2 mg

ONCE A DAY

Rx Only

100 Tablets

NDC 42571-103-01

Glimec

TABLETS, USP

4 mg

ONCE A DAY

Rx Only

100 Tablets

Glimec pharmaceutical active ingredients containing related brand and generic drugs:

Active ingredient is the part of the drug or medicine which is biologically active. This portion of the drug is responsible for the main action of the drug which is intended to cure or reduce the symptom or disease. The other portions of the drug which are inactive are called excipients; there role is to act as vehicle or binder. In contrast to active ingredient, the inactive ingredient's role is not significant in the cure or treatment of the disease. There can be one or more active ingredients in a drug.


Glimec available forms, composition, doses:

Form of the medicine is the form in which the medicine is marketed in the market, for example, a medicine X can be in the form of capsule or the form of chewable tablet or the form of tablet. Sometimes same medicine can be available as injection form. Each medicine cannot be in all forms but can be marketed in 1, 2, or 3 forms which the pharmaceutical company decided based on various background research results.
Composition is the list of ingredients which combinedly form a medicine. Both active ingredients and inactive ingredients form the composition. The active ingredient gives the desired therapeutic effect whereas the inactive ingredient helps in making the medicine stable.
Doses are various strengths of the medicine like 10mg, 20mg, 30mg and so on. Each medicine comes in various doses which is decided by the manufacturer, that is, pharmaceutical company. The dose is decided on the severity of the symptom or disease.


Glimec destination | category:

Destination is defined as the organism to which the drug or medicine is targeted. For most of the drugs what we discuss, human is the drug destination.
Drug category can be defined as major classification of the drug. For example, an antihistaminic or an antipyretic or anti anginal or pain killer, anti-inflammatory or so.


Glimec Anatomical Therapeutic Chemical codes:

A medicine is classified depending on the organ or system it acts [Anatomical], based on what result it gives on what disease, symptom [Therapeutical], based on chemical composition [Chemical]. It is called as ATC code. The code is based on Active ingredients of the medicine. A medicine can have different codes as sometimes it acts on different organs for different indications. Same way, different brands with same active ingredients and same indications can have same ATC code.


Glimec pharmaceutical companies:

Pharmaceutical companies are drug manufacturing companies that help in complete development of the drug from the background research to formation, clinical trials, release of the drug into the market and marketing of the drug.
Researchers are the persons who are responsible for the scientific research and is responsible for all the background clinical trials that resulted in the development of the drug.


advertisement

References

  1. Dailymed."GLIMEPIRIDE (GLIMEPIRIDE) TABLET [MICRO LABS LIMITED]". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  2. Dailymed."GLIMEPIRIDE; PIOGLITAZONE HYDROCHLORIDE: DailyMed provides trustworthy information about marketed drugs in the United States. DailyMed is the official provider of FDA label information (package inserts).". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  3. "glimepiride". https://pubchem.ncbi.nlm.nih.gov/co... (accessed August 28, 2018).

Frequently asked Questions

Can i drive or operate heavy machine after consuming Glimec?

Depending on the reaction of the Glimec after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Glimec not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.

Is Glimec addictive or habit forming?

Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.

Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.

advertisement

Review

sdrugs.com conducted a study on Glimec, and the result of the survey is set out below. It is noteworthy that the product of the survey is based on the perception and impressions of the visitors of the website as well as the views of Glimec consumers. We, as a result of this, advice that you do not base your therapeutic or medical decisions on this result, but rather consult your certified medical experts for their recommendations.

Visitor reports

Visitor reported useful

No survey data has been collected yet

Visitor reported side effects

No survey data has been collected yet

Visitor reported price estimates

No survey data has been collected yet

Visitor reported frequency of use

No survey data has been collected yet

Visitor reported doses

No survey data has been collected yet

Visitor reported time for results

No survey data has been collected yet

Visitor reported administration

No survey data has been collected yet

Visitor reported age

No survey data has been collected yet

Visitor reviews


There are no reviews yet. Be the first to write one!


Your name: 
Email: 
Spam protection:  < Type 9 here

The information was verified by Dr. Rachana Salvi, MD Pharmacology

© 2002 - 2022 "sdrugs.com". All Rights Reserved