Atracurium-Hameln

What is the dose of the medication you are taking?
advertisement

Atracurium-Hameln uses


INDICATIONS AND USAGE

Atracurium-Hameln besylate injection is indicated, as an adjunct to general anesthesia, to facilitate endotracheal intubation and to provide skeletal muscle relaxation during surgery or mechanical ventilation.

CONTRAINDICATIONS

Atracurium-Hameln besylate is contraindicated in patients known to have a hypersensitivity to it. Use of Atracurium-Hameln besylate from multiple dose vials containing benzyl alcohol as a preservative is contraindicated in patients with a known hypersensitivity to benzyl alcohol.

WARNINGS

Atracurium-Hameln SHOULD BE USED ONLY BY THOSE SKILLED IN AIRWAY MANAGEMENT AND RESPIRATORY SUPPORT. EQUIPMENT AND PERSONNEL MUST BE IMMEDIATELY AVAILABLE FOR ENDOTRACHEAL INTUBATION AND SUPPORT OF VENTILATION, INCLUDING ADMINISTRATION OF POSITIVE PRESSURE OXYGEN. ADEQUACY OF RESPIRATION MUST BE ASSURED THROUGH ASSISTED OR CONTROLLED VENTILATION. ANTICHOLINESTERASE REVERSAL AGENTS SHOULD BE IMMEDIATELY AVAILABLE.

DO NOT GIVE Atracurium-Hameln BESYLATE BY INTRAMUSCULAR ADMINISTRATION.

Atracurium-Hameln has no known effect on consciousness, pain threshold, or cerebration. It should be used only with adequate anesthesia.

Atracurium-Hameln besylate injection, which has an acid pH, should not be mixed with alkaline solutions in the same syringe or administered simultaneously during intravenous infusion through the same needle. Depending on the resultant pH of such mixtures, Atracurium-Hameln may be inactivated and a free acid may be precipitated.

Atracurium-Hameln besylate injection 10 mL multiple dose vials contain benzyl alcohol. In neonates, benzyl alcohol has been associated with an increased incidence of neurological and other complications which are sometimes fatal. Atracurium-Hameln besylate 5 mL single use vials do not contain benzyl alcohol (see PRECAUTIONS: Pediatric Use ).

Anaphylaxis

Severe anaphylactic reactions to neuromuscular blocking agents, including Atracurium-Hameln besylate, have been reported. These reactions have in some cases been life-threatening and fatal. Due to the potential severity of these reactions, the necessary precautions, such as the immediate availability of appropriate emergency treatment, should be taken. Precautions should also be taken in those individuals who have had previous anaphylactic reactions to other neuromuscular blocking agents since cross-reactivity between neuromuscular blocking agents, both depolarizing and non-depolarizing, has been reported in this class of drugs.

advertisement

PRECAUTIONS

Since allergic cross-reactivity has been reported in this class, request information from your patients about previous anaphylactic reactions to other neuromuscular blocking agents. In addition, inform your patients that severe anaphylactic reactions to neuromuscular blocking agents, including Atracurium-Hameln besylate have been reported.

General

Although Atracurium-Hameln is a less potent histamine releaser than d-tubocurarine or metocurine, the possibility of substantial histamine release in sensitive individuals must be considered. Special caution should be exercised in administering Atracurium-Hameln to patients in whom substantial histamine release would be especially hazardous and in patients with any history (e.g., severe anaphylactoid reactions or asthma) suggesting a greater risk of histamine release. In these patients, the recommended initial Atracurium-Hameln besylate dose is lower (0.3 to 0.4 mg/kg) than for other patients and should be administered slowly or in divided doses over one minute.

Since Atracurium-Hameln has no clinically significant effects on heart rate in the recommended dosage range, it will not counteract the bradycardia produced by many anesthetic agents or vagal stimulation. As a result, bradycardia during anesthesia may be more common with Atracurium-Hameln than with other muscle relaxants.

Atracurium-Hameln may have profound effects in patients with myasthenia gravis, Eaton-Lambert syndrome, or other neuromuscular diseases in which potentiation of nondepolarizing agents has been noted. The use of a peripheral nerve stimulator is especially important for assessing neuromuscular block in these patients. Similar precautions should be taken in patients with severe electrolyte disorders or carcinomatosis.

Multiple factors in anesthesia practice are suspected of triggering malignant hyperthermia (MH), a potentially fatal hypermetabolic state of skeletal muscle. Halogenated anesthetic agents and succinylcholine are recognized as the principal pharmacologic triggering agents in MH-susceptible patients; however, since MH can develop in the absence of established triggering agents, the clinician should be prepared to recognize and treat MH in any patient scheduled for general anesthesia. Reports of MH have been rare in cases in which Atracurium-Hameln has been used. In studies of MH-susceptible animals (swine) and in a clinical study of MH-susceptible patients, Atracurium-Hameln did not trigger this syndrome.

Resistance to nondepolarizing neuromuscular blocking agents may develop in burn patients. Increased doses of nondepolarizing muscle relaxants may be required in burn patients and are dependent on the time elapsed since the burn injury and the size of the burn.

The safety of Atracurium-Hameln has not been established in patients with bronchial asthma.

Long-Term Use in Intensive Care Unit (ICU)

When there is a need for long-term mechanical ventilation, the benefits-to-risk ratio of neuromuscular block must be considered. The long-term (1 to 10 days) infusion of Atracurium-Hameln besylate during mechanical ventilation in the ICU has been evaluated in several studies. Average infusion rates of 11 to 13 mcg/kg per minute (range: 4.5 to 29.5) were required to achieve adequate neuromuscular block. These data suggest that there is wide interpatient variability in dosage requirements. In addition, these studies have shown that dosage requirements may decrease or increase with time. Following discontinuation of infusion of Atracurium-Hameln besylate in these ICU studies, spontaneous recovery of four twitches in a train-of-four occurred in an average of approximately 30 minutes (range: 15 to 75 minutes) and spontaneous recovery to a train-of-four ratio >75% (the ratio of height of the fourth to the first twitch in a train-of-four) occurred in an average of approximately 60 minutes (range: 32 to 108 minutes).

Little information is available on the plasma levels and clinical consequences of Atracurium-Hameln metabolites that may accumulate during days to weeks of Atracurium-Hameln administration in ICU patients. Laudanosine, a major biologically active metabolite of Atracurium-Hameln without neuromuscular blocking activity, produces transient hypotension and, in higher doses, cerebral excitatory effects (generalized muscle twitching and seizures) when administered to several species of animals. There have been rare spontaneous reports of seizures in ICU patients who have received Atracurium-Hameln or other agents. These patients usually had predisposing causes (such as head trauma, cerebral edema, hypoxic encephalopathy, viral encephalitis, uremia). There are insufficient data to determine whether or not laudanosine contributes to seizures in ICU patients.

WHENEVER THE USE OF Atracurium-Hameln OR ANY NEUROMUSCULAR BLOCKING AGENT IS CONTEMPLATED IN THE ICU, IT IS RECOMMENDED THAT NEUROMUSCULAR TRANSMISSION BE MONITORED CONTINUOUSLY DURING ADMINISTRATION WITH THE HELP OF A NERVE STIMULATOR. ADDITIONAL DOSES OF Atracurium-Hameln OR ANY OTHER NEUROMUSCULAR BLOCKING AGENT SHOULD NOT BE GIVEN BEFORE THERE IS A DEFINITE RESPONSE TO T1 OR TO THE FIRST TWITCH. IF NO RESPONSE IS ELICITED, INFUSION ADMINISTRATION SHOULD BE DISCONTINUED UNTIL A RESPONSE RETURNS.

Hemofiltration has a minimal effect on plasma levels of Atracurium-Hameln and its metabolites, including laudanosine. The effects of hemodialysis and hemoperfusion on plasma levels of Atracurium-Hameln and its metabolites are unknown.

Drug Interactions

Drugs which may enhance the neuromuscular blocking action of Atracurium-Hameln include: enflurane; isoflurane; halothane; certain antibiotics, especially the aminoglycosides and polymyxins; lithium; magnesium salts; procainamide; and quinidine.

If other muscle relaxants are used during the same procedure, the possibility of a synergistic or antagonist effect should be considered.

The prior administration of succinylcholine does not enhance the duration, but quickens the onset and may increase the depth, of neuromuscular block induced by Atracurium-Hameln besylate. Atracurium-Hameln should not be administered until a patient has recovered from succinylcholine-induced neuromuscular block.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis and fertility studies have not been performed. Atracurium-Hameln was evaluated in a battery of three short-term mutagenicity tests. It was non-mutagenic in both the Ames Salmonella assay at concentrations up to 1000 mcg/plate, and in a rat bone marrow cytogenicity assay at up to paralyzing doses. A positive response was observed in the mouse lymphoma assay under conditions which killed over 80% of the treated cells; there was no mutagenicity at 60 mcg/mL and lower, concentrations which killed up to half of the treated cells. A far weaker response was observed in the presence of metabolic activation at concentrations (1200 mcg/mL and higher) which also killed over 80% of the treated cells.

Mutagenicity testing is intended to simulate chronic (years to lifetime) exposure in an effort to determine potential carcinogenicity. Thus, a single positive mutagenicity response for a drug used infrequently and/or briefly is of questionable clinical relevance.

Pregnancy

Teratogenic Effects: Pregnancy Category C

Atracurium-Hameln besylate has been shown to be potentially teratogenic in rabbits when given in doses up to approximately one-half the human dose. There are no adequate and well-controlled studies in pregnant women. Atracurium-Hameln should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Atracurium-Hameln besylate was administered subcutaneously on days 6 through 18 of gestation to non-ventilated Dutch rabbits. Treatment groups were given either 0.15 mg/kg once daily or 0.10 mg/kg twice daily. Lethal respiratory distress occurred in two 0.15 mg/kg animals and in one 0.10 mg/kg animal, with transient respiratory distress or other evidence of neuromuscular block occurring in 10 of 19 and in 4 of 20 of the 0.15 mg/kg and 0.10 mg/kg animals, respectively. There was an increased incidence of certain spontaneously occurring visceral and skeletal anomalies or variations in one or both treated groups when compared to non-treated controls. The percentage of male fetuses was lower and the post-implantation losses were increased (15% vs. 8%) in the group given 0.15 mg/kg once daily when compared to the controls; the mean numbers of implants (6.5 vs. 4.4) and normal live fetuses (5.4 vs. 3.8) were greater in this group when compared to the control group.

Labor and Delivery

It is not known whether muscle relaxants administered during vaginal delivery have immediate or delayed adverse effects on the fetus or increase the likelihood that resuscitation of the newborn will be necessary. The possibility that forceps delivery will be necessary may increase.

Atracurium-Hameln besylate (0.3 mg/kg) has been administered to 26 pregnant women during delivery by cesarean section. No harmful effects were attributable to Atracurium-Hameln in any of the neonates, although small amounts of Atracurium-Hameln were shown to cross the placental barrier. The possibility of respiratory depression in the neonate should always be considered following cesarean section during which a neuromuscular blocking agent has been administered. In patients receiving magnesium sulfate, the reversal of neuromuscular block may be unsatisfactory and the dose of Atracurium-Hameln besylate should be lowered as indicated.

Nursing Mothers

It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when Atracurium-Hameln besylate is administered to a nursing woman.

Pediatric Use

Safety and effectiveness in pediatric patients below the age of 1 month have not been established.

Geriatric Use

Since marketing in 1983, uncontrolled clinical experience and limited data from controlled trials have not identified differences in effectiveness, safety, or dosage requirements between healthy elderly and younger patients (see CLINICAL PHARMACOLOGY ); however, as with other neuromuscular blocking agents, the use of a peripheral nerve stimulater to monitor neuromuscular function is suggested (see DOSAGE AND ADMINISTRATION ).

advertisement

ADVERSE REACTIONS

Observed in Controlled Clinical Studies

Atracurium-Hameln was well tolerated and produced few adverse reactions during extensive clinical trials. Most adverse reactions were suggestive of histamine release. In studies including 875 patients, Atracurium-Hameln was discontinued in only one patient and six other patients required treatment for adverse reactions attributable to Atracurium-Hameln (wheezing in one, hypotension in five). Of the five patients who required treatment for hypotension, three had a history of significant cardiovascular disease. The overall incidence rate for clinically important adverse reactions, therefore, was 7/875 or 0.8%.

Table 1 includes all adverse reactions reported attributable to Atracurium-Hameln during clinical trials with 875 patients.

* Includes the recommended initial dosage range for most patients.

Adverse Reaction Initial Atracurium-Hameln Dose (mg/kg)
0.00-0.30

(n=485)

0.31-0.50*

(n=366)

≥0.60

(n=24)

Total

(n=875)

Skin Flush 1.0% 8.7% 29.2% 5.0%
Erythema 0.6% 0.5% 0% 0.6%
Itching 0.4% 0% 0% 0.2%
Wheezing/Bronchial Secretions 0.2% 0.3% 0% 0.2%
Hives 0.2% 0% 0% 0.1%

Most adverse reactions were of little clinical significance unless they were associated with significant hemodynamic changes. Table 2 summarizes the incidences of substantial vital sign changes noted during Atracurium-Hameln clinical trials with 530 patients, without cardiovascular disease, in whom these parameters were assessed.

* Includes the recommended initial dosage range for most patients.

Vital Sign Change Initial Atracurium-Hameln Dose (mg/kg)
0.00-0.30

(n=365)

0.31-0.50*

(n=144)

≥0.60

(n=21)

Total

(n = 530)

Mean Arterial Pressure
Increase 1.9% 2.8% 0% 2.1%
Decrease 1.1% 2.1% 14.3% 1.9%
Heart Rate
Increase 1.6% 2.8% 4.8% 2.1%
Decrease 0.8% 0% 0% 0.6%

Observed in Clinical Practice

Based on initial clinical practice experience in approximately 3 million patients who received Atracurium-Hameln in the U.S. and in the United Kingdom, spontaneously reported adverse reactions were uncommon (approximately 0.01% to 0.02%). The following adverse reactions are among the most frequently reported, but there are insufficient data to support an estimate of their incidence:

General: Allergic reactions (anaphylactic or anaphylactoid responses) which, in rare instances, were severe (e.g., cardiac arrest)

Musculoskeletal: Inadequate block, prolonged block

Cardiovascular: Hypotension, vasodilatation (flushing), tachycardia, bradycardia

Respiratory: Dyspnea, bronchospasm, laryngospasm

Integumentary: Rash, urticaria, reaction at injection site

There have been rare spontaneous reports of seizures in ICU patients following long-term infusion of Atracurium-Hameln to support mechanical ventilation. There are insufficient data to define the contribution, if any, of Atracurium-Hameln and/or its metabolite laudanosine (see PRECAUTIONS: Long-Term Use in Intensive Care Unit [ICU]).

There have been post-marketing reports of severe allergic reactions (anaphylactic and anaphylactoid reactions) associated with use of neuromuscular blocking agents, including Atracurium-Hameln besylate. These reactions, in some cases, have been life-threatening and fatal. Because these reactions were reported voluntarily from a population of uncertain size, it is not possible to reliably estimate their frequency (see WARNINGS and PRECAUTIONS ).

To report SUSPECTED ADVERSE REACTIONS, contact Sagent Pharmaceuticals, Inc. at 1-866-625-1618 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch .

advertisement

OVERDOSAGE

There has been limited experience with overdosage of Atracurium-Hameln besylate. The possibility of iatrogenic overdosage can be minimized by carefully monitoring muscle twitch response to peripheral nerve stimulation. Excessive doses of Atracurium-Hameln can be expected to produce enhanced pharmacological effects. Overdosage may increase the risk of histamine release and cardiovascular effects, especially hypotension. If cardiovascular support is necessary, this should include proper positioning, fluid administration, and the use of vasopressor agents if necessary. The patient's airway should be assured, with manual or mechanical ventilation maintained as necessary. A longer duration of neuromuscular block may result from overdosage and a peripheral nerve stimulator should be used to monitor recovery. Recovery may be facilitated by administration of an anticholinesterase reversing agent such as neostigmine, edrophonium, or pyridostigmine, in conjunction with an anticholinergic agent such as atropine or glycopyrrolate. The appropriate package inserts should be consulted for prescribing information.

Three pediatric patients (3 weeks, 4 and 5 months of age) unintentionally received doses of 0.8 mg/kg to 1 mg/kg of Atracurium-Hameln besylate. The time to 25% recovery (50 to 55 minutes) following these doses, which were 5 to 6 times the ED95 dose, was moderately longer than the corresponding time observed following doses 2 to 2.5 times the Atracurium-Hameln ED95 dose in infants (22 to 36 minutes). Cardiovascular changes were minimal. Nonetheless the possibility of cardiovascular changes must be considered in the case of overdose.

An adult patient (17 years of age) unintentionally received an initial dose of 1.3 mg/kg of Atracurium-Hameln besylate. The time from injection to 25% recovery (83 minutes) was approximately twice that observed following maximum recommended doses in adults (35 to 45 minutes). The patient experienced moderate hemodynamic changes (13% increase in mean arterial pressure and 27% increase in heart rate) which persisted for 40 minutes and did not require treatment.

The intravenous LD50s determined in non-ventilated male and female albino mice and male Wistar rats were 1.9, 2.01 and 1.31 mg/kg, respectively. Deaths occurred within 2 minutes and were caused by respiratory paralysis. The subcutaneous LD50 determined in non-ventilated male Wistar rats was 282.8 mg/kg. Tremors, ptosis, loss of reflexes and respiratory failure preceded death which occurred 45 to 120 minutes after injection.

advertisement

DOSAGE AND ADMINISTRATION

To avoid distress to the patient, Atracurium-Hameln should not be administered before unconsciousness has been induced. Atracurium-Hameln should not be mixed in the same syringe, or administered simultaneously through the same needle, with alkaline solutions.

Atracurium-Hameln besylate should be administered intravenously. DO NOT GIVE Atracurium-Hameln BESYLATE BY INTRAMUSCULAR ADMINISTRATION. Intramuscular administration of Atracurium-Hameln besylate may result in tissue irritation and there are no clinical data to support this route of administration.

As with other neuromuscular blocking agents, the use of a peripheral nerve stimulator will permit the most advantageous use of Atracurium-Hameln besylate, minimizing the possibility of overdosage or underdosage, and assist in the evaluation of recovery.

Bolus Doses for Intubation and Maintenance of Neuromuscular Block

Adults

An Atracurium-Hameln besylate dose of 0.4 to 0.5 mg/kg (1.7 to 2.2 times the ED95), given as an intravenous bolus injection, is the recommended initial dose for most patients. With this dose, good or excellent conditions for nonemergency intubation can be expected in 2 to 2.5 minutes in most patients, with maximum neuromuscular block achieved approximately 3 to 5 minutes after injection. Clinically required neuromuscular block generally lasts 20 to 35 minutes under balanced anesthesia. Under balanced anesthesia, recovery to 25% of control is achieved approximately 35 to 45 minutes after injection, and recovery is usually 95% complete approximately 60 minutes after injection.

Atracurium-Hameln is potentiated by isoflurane or enflurane anesthesia. The same initial Atracurium-Hameln besylate dose of 0.4 to 0.5 mg/kg may be used for intubation prior to administration of these inhalation agents; however, if Atracurium-Hameln is first administered under steady-state of isoflurane or enflurane, the initial Atracurium-Hameln besylate dose should be reduced by approximately one-third, i.e., to 0.25 to 0.35 mg/kg, to adjust for the potentiating effects of these anesthetic agents. With halothane, which has only a marginal (approximately 20%) potentiating effect on Atracurium-Hameln, smaller dosage reductions may be considered.

Atracurium-Hameln besylate doses of 0.08 to 0.10 mg/kg are recommended for maintenance of neuromuscular block during prolonged surgical procedures. The first maintenance dose will generally be required 20 to 45 minutes after the initial Atracurium-Hameln besylate injection, but the need for maintenance doses should be determined by clinical criteria. Because Atracurium-Hameln lacks cumulative effects, maintenance doses may be administered at relatively regular intervals for each patient, ranging approximately from 15 to 25 minutes under balanced anesthesia, slightly longer under isoflurane or enflurane. Higher Atracurium-Hameln doses (up to 0.2 mg/kg) permit maintenance dosing at longer intervals.

Pediatric Patients

No Atracurium-Hameln dosage adjustments are required for pediatric patients two years of age or older. An Atracurium-Hameln besylate dose of 0.3 to 0.4 mg/kg is recommended as the initial dose for infants (1 month to 2 years of age) under halothane anesthesia. Maintenance doses may be required with slightly greater frequency in infants and children than in adults.

Special Considerations

An initial Atracurium-Hameln besylate dose of 0.3 to 0.4 mg/kg, given slowly or in divided doses over one minute, is recommended for adults, children, or infants with significant cardiovascular disease and for adults, children, or infants with any history (e.g., severe anaphylactoid reactions or asthma) suggesting a greater risk of histamine release.

Dosage reductions must be considered also in patients with neuromuscular disease, severe electrolyte disorders, or carcinomatosis in which potentiation of neuromuscular block or difficulties with reversal have been demonstrated. There has been no clinical experience with Atracurium-Hameln in these patients, and no specific dosage adjustments can be recommended. No Atracurium-Hameln dosage adjustments are required for patients with renal disease.

An initial Atracurium-Hameln besylate dose of 0.3 to 0.4 mg/kg is recommended for adults following the use of succinylcholine for intubation under balanced anesthesia. Further reductions may be desirable with the use of potent inhalation anesthetics. The patient should be permitted to recover from the effects of succinylcholine prior to Atracurium-Hameln administration. Insufficient data are available for recommendation of a specific initial Atracurium-Hameln dose for administration following the use of succinylcholine in children and infants.

Use by Continuous Infusion

Infusion in the Operating Room

After administration of a recommended initial bolus dose of Atracurium-Hameln besylate injection (0.3 to 0.5 mg/kg), a diluted solution of Atracurium-Hameln besylate can be administered by continuous infusion to adults and pediatric patients aged 2 or more years for maintenance of neuromuscular block during extended surgical procedures.

Infusion of Atracurium-Hameln should be individualized for each patient. The rate of administration should be adjusted according to the patient's response as determined by peripheral nerve stimulation. Accurate dosing is best achieved using a precision infusion device.

Infusion of Atracurium-Hameln should be initiated only after early evidence of spontaneous recovery from the bolus dose. An initial infusion rate of 9 to 10 mcg/kg/min may be required to rapidly counteract the spontaneous recovery of neuromuscular function. Thereafter, a rate of 5 to 9 mcg/kg/min should be adequate to maintain continuous neuromuscular block in the range of 89% to 99% in most pediatric and adult patients under balanced anesthesia. Occasional patients may require infusion rates as low as 2 mcg/kg/min or as high as 15 mcg/kg/min.

The neuromuscular blocking effect of Atracurium-Hameln administered by infusion is potentiated by enflurane or isoflurane and, to a lesser extent, by halothane. Reduction in the infusion rate of Atracurium-Hameln should, therefore, be considered for patients receiving inhalation anesthesia. The rate of Atracurium-Hameln infusion should be reduced by approximately one-third in the presence of steady-state enflurane or isoflurane anesthesia; smaller reductions should be considered in the presence of halothane.

In patients undergoing cardiopulmonary bypass with induced hypothermia, the rate of infusion of Atracurium-Hameln required to maintain adequate surgical relaxation during hypothermia (25° to 28°C) has been shown to be approximately half the rate required during normothermia.

Spontaneous recovery from neuromuscular block following discontinuation of Atracurium-Hameln infusion may be expected to proceed at a rate comparable to that following administration of a single bolus dose.

Infusion in the Intensive Care Unit (ICU)

The principles for infusion of Atracurium-Hameln in the OR are also applicable to use in the ICU.

An infusion rate of 11 to 13 mcg/kg/min (range: 4.5 to 29.5) should provide adequate neuromuscular block in adult patients in an ICU. Limited information suggests that infusion rates required for pediatric patients in the ICU may be higher than in adult patients. There may be wide interpatient variability in dosage requirements and these requirements may increase or decrease with time (see PRECAUTIONS: Long-Term Use in Intensive Care Unit [ICU] ). Following recovery from neuromuscular block, readministration of a bolus dose may be necessary to quickly re-establish neuromuscular block prior to reinstitution of the infusion.

Infusion Rate Tables

The amount of infusion solution required per minute will depend upon the concentration of Atracurium-Hameln in the infusion solution, the desired dose of Atracurium-Hameln, and the patient's weight. The following tables provide guidelines for delivery, in mL/hr (equivalent to microdrops/min when 60 microdrops = 1 mL), of Atracurium-Hameln solutions in concentrations of 0.2 mg/mL (20 mg in 100 mL) or 0.5 mg/mL (50 mg in 100 mL) with an infusion pump or a gravity flow device.

Patient

Weight

(kg)

Drug Delivery Rate (mcg/kg/min)
5 6 7 8 9 10 11 12 13
Infusion Delivery Rate (mL/hr)
30 45 54 63 72 81 90 99 108 117
35 53 63 74 84 95 105 116 126 137
40 60 72 84 96 108 120 132 144 156
45 68 81 95 108 122 135 149 162 176
50 75 90 105 120 135 150 165 180 195
55 83 99 116 132 149 165 182 198 215
60 90 108 126 144 162 180 198 216 234
65 98 117 137 156 176 195 215 234 254
70 105 126 147 168 189 210 231 252 273
75 113 135 158 180 203 225 248 270 293
80 120 144 168 192 216 240 264 288 312
90 135 162 189 216 243 270 297 324 351
100 150 180 210 240 270 300 330 360 390
Patient

Weight

(kg)

Drug Delivery Rate (mcg/kg/min)
5 6 7 8 9 10 11 12 13
Infusion Delivery Rate (mL/hr)
30 18 22 25 29 32 36 40 43 47
35 21 25 29 34 38 42 46 50 55
40 24 29 34 38 43 48 53 58 62
45 27 32 38 43 49 54 59 65 70
50 30 36 42 48 54 60 66 72 78
55 33 40 46 53 59 66 73 79 86
60 36 43 50 58 65 72 79 86 94
65 39 47 55 62 70 78 86 94 101
70 42 50 59 67 76 84 92 101 109
75 45 54 63 72 81 90 99 108 117
80 48 58 67 77 86 96 106 115 125
90 54 65 76 86 97 108 119 130 140
100 60 72 84 96 108 120 132 144 156

Compatibility and Admixtures

Atracurium-Hameln besylate infusion solutions may be prepared by admixing Atracurium-Hameln besylate injection with an appropriate diluent such as 5% Dextrose Injection, 0.9% Sodium Chloride Injection, or 5% Dextrose and 0.9% Sodium Chloride Injection. Infusion solutions should be used within 24 hours of preparation. Unused solutions should be discarded. Solutions containing 0.2 mg/mL or 0.5 mg/mL Atracurium-Hameln besylate in the above diluents may be stored either under refrigeration or at room temperature for 24 hours without significant loss of potency. Care should be taken during admixture to prevent inadvertent contamination. Visually inspect prior to administration.

Spontaneous degradation of Atracurium-Hameln besylate has been demonstrated to occur more rapidly in Lactated Ringer's solution than in 0.9% sodium chloride solution. Therefore, it is recommended that Lactated Ringer's Injection not be used as a diluent in preparing solutions of Atracurium-Hameln besylate injection for infusion.

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

HOW SUPPLIED

Atracurium-Hameln Besylate Injection, USP is supplied as follows:

NDC Atracurium-Hameln Besylate Injection, USP Package Factor
25021-659-05 50 mg per 5 mL Single-Dose Vial 10 vials per carton
NDC Atracurium-Hameln Besylate Injection, USP (10 mg per mL) Package Factor
25021-672-10 100 mg per 10 mL Multi-Dose Vial

(contains benzyl alcohol – see WARNINGS )

10 vials per carton

Storage Conditions

Store between 2° and 8°C (36° and 46°F) to preserve potency.

Upon removal from refrigeration to room temperature storage conditions (25°C/77°F), use Atracurium-Hameln Besylate Injection within 14 days even if re-refrigerated.

Protect from light. Retain in carton until time of use.

Do not freeze.

Sterile, Nonpyrogenic.

The container closure is not made with natural rubber latex.

SAGENT

Mfd. for SAGENT Pharmaceuticals

Schaumburg, IL 60195 (USA)

Made in China

©2014 Sagent Pharmaceuticals, Inc.

Revised: September 2014

Atracurium-Hameln pharmaceutical active ingredients containing related brand and generic drugs:

Active ingredient is the part of the drug or medicine which is biologically active. This portion of the drug is responsible for the main action of the drug which is intended to cure or reduce the symptom or disease. The other portions of the drug which are inactive are called excipients; there role is to act as vehicle or binder. In contrast to active ingredient, the inactive ingredient's role is not significant in the cure or treatment of the disease. There can be one or more active ingredients in a drug.


Atracurium-Hameln available forms, composition, doses:

Form of the medicine is the form in which the medicine is marketed in the market, for example, a medicine X can be in the form of capsule or the form of chewable tablet or the form of tablet. Sometimes same medicine can be available as injection form. Each medicine cannot be in all forms but can be marketed in 1, 2, or 3 forms which the pharmaceutical company decided based on various background research results.
Composition is the list of ingredients which combinedly form a medicine. Both active ingredients and inactive ingredients form the composition. The active ingredient gives the desired therapeutic effect whereas the inactive ingredient helps in making the medicine stable.
Doses are various strengths of the medicine like 10mg, 20mg, 30mg and so on. Each medicine comes in various doses which is decided by the manufacturer, that is, pharmaceutical company. The dose is decided on the severity of the symptom or disease.


Atracurium-Hameln destination | category:

Destination is defined as the organism to which the drug or medicine is targeted. For most of the drugs what we discuss, human is the drug destination.
Drug category can be defined as major classification of the drug. For example, an antihistaminic or an antipyretic or anti anginal or pain killer, anti-inflammatory or so.


Atracurium-Hameln Anatomical Therapeutic Chemical codes:

A medicine is classified depending on the organ or system it acts [Anatomical], based on what result it gives on what disease, symptom [Therapeutical], based on chemical composition [Chemical]. It is called as ATC code. The code is based on Active ingredients of the medicine. A medicine can have different codes as sometimes it acts on different organs for different indications. Same way, different brands with same active ingredients and same indications can have same ATC code.


Atracurium-Hameln pharmaceutical companies:

Pharmaceutical companies are drug manufacturing companies that help in complete development of the drug from the background research to formation, clinical trials, release of the drug into the market and marketing of the drug.
Researchers are the persons who are responsible for the scientific research and is responsible for all the background clinical trials that resulted in the development of the drug.


advertisement

References

  1. Dailymed."ATRACURIUM BESYLATE INJECTION, SOLUTION [SAGENT PHARMACEUTICALS]". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  2. Dailymed."ATRACURIUM BESYLATE: DailyMed provides trustworthy information about marketed drugs in the United States. DailyMed is the official provider of FDA label information (package inserts).". https://dailymed.nlm.nih.gov/dailym... (accessed August 28, 2018).
  3. "Atracurium besylate". https://pubchem.ncbi.nlm.nih.gov/co... (accessed August 28, 2018).

Frequently asked Questions

Can i drive or operate heavy machine after consuming Atracurium-Hameln?

Depending on the reaction of the Atracurium-Hameln after taken, if you are feeling dizziness, drowsiness or any weakness as a reaction on your body, Then consider Atracurium-Hameln not safe to drive or operate heavy machine after consumption. Meaning that, do not drive or operate heavy duty machines after taking the capsule if the capsule has a strange reaction on your body like dizziness, drowsiness. As prescribed by a pharmacist, it is dangerous to take alcohol while taking medicines as it exposed patients to drowsiness and health risk. Please take note of such effect most especially when taking Primosa capsule. It's advisable to consult your doctor on time for a proper recommendation and medical consultations.

Is Atracurium-Hameln addictive or habit forming?

Medicines are not designed with the mind of creating an addiction or abuse on the health of the users. Addictive Medicine is categorically called Controlled substances by the government. For instance, Schedule H or X in India and schedule II-V in the US are controlled substances.

Please consult the medicine instruction manual on how to use and ensure it is not a controlled substance.In conclusion, self medication is a killer to your health. Consult your doctor for a proper prescription, recommendation, and guidiance.

advertisement

Review

sdrugs.com conducted a study on Atracurium-Hameln, and the result of the survey is set out below. It is noteworthy that the product of the survey is based on the perception and impressions of the visitors of the website as well as the views of Atracurium-Hameln consumers. We, as a result of this, advice that you do not base your therapeutic or medical decisions on this result, but rather consult your certified medical experts for their recommendations.

Visitor reports

Visitor reported useful

No survey data has been collected yet

Visitor reported side effects

No survey data has been collected yet

Visitor reported price estimates

No survey data has been collected yet

Visitor reported frequency of use

No survey data has been collected yet

Visitor reported doses

No survey data has been collected yet

Visitor reported time for results

No survey data has been collected yet

Visitor reported administration

No survey data has been collected yet

Visitor reported age

No survey data has been collected yet

Visitor reviews


There are no reviews yet. Be the first to write one!


Your name: 
Email: 
Spam protection:  < Type 28 here

The information was verified by Dr. Rachana Salvi, MD Pharmacology

© 2002 - 2024 "sdrugs.com". All Rights Reserved